

Italian Emission Inventory 1990 - 2018

Informative Inventory Report 2020

Italian Emission Inventory 1990-2018

Informative Inventory Report 2020

Legal Disclaimer

The Institute for Environmental Protection and Research (ISPRA), together with the 21 Regional Agencies (ARPA) and Provincial Agencies (APPA) for the protection of the environment, as of 14 January 2017 is part of the National Network System for the Protection of the Environment (SNPA), established by the Law June 28, 2016, n.132.

The Institute for Environmental Protection and Research, or persons acting on its behalf, are not responsible for the use that may be made of the information contained in this report.

ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Vitaliano Brancati, 48 – 00144 Roma www.isprambiente.gov.it

ISPRA, Rapporti 319/2020 ISBN 978-88-448-0994-2

Extracts from this document may be reproduced on the condition that the source is acknowledged

Graphic design:

Cover design: Franco Iozzoli ISPRA – Communications Area Cover drawing: Chiara Arcarese

Coordination of the online publication:

Daria Mazzella ISPRA – Communications Area

March 2020

Annual Report for submission under the UNECE Convention on Long-range Transboundary Air Pollution and European Union National Emission Ceiling Directive

Authors

Ernesto Taurino, Antonella Bernetti, Antonio Caputo, Marco Cordella, Riccardo De Lauretis, Ilaria D'Elia (ENEA), Eleonora Di Cristofaro, Andrea Gagna, Barbara Gonella, Federica Moricci, Emanuele Peschi, Daniela Romano, Marina Vitullo

Contact: Riccardo De Lauretis

telephone +39 0650072543

e-mail riccardo.delauretis@isprambiente.it

ISPRA- Institute for Environmental Protection and Research Environmental Assessment, Control and Sustainability Department Emissions, Prevention of Atmospheric Impacts and Climate Change Area Air Emission Inventory Unit Via V. Brancati, 48 00144 Rome ITALY

Text available on ISPRA website at http://www.isprambiente.gov.it

CONTENTS

E	XECUTIV	E SUMMARY	8
1	INTROD	DUCTION	9
	1.1 BAC	EKGROUND INFORMATION ON THE CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION	9
	1.2 NAT	IONAL INVENTORY	10
	1.3 Inst	TTUTIONAL ARRANGEMENTS	11
	1.4 Invi	ENTORY PREPARATION PROCESS	13
	1.5 MET	THODS AND DATA SOURCES	14
	1.6 KEY	CATEGORIES	16
	1.7 QA/	QC AND VERIFICATION METHODS	20
	1.8 GEN	ERAL UNCERTAINTY EVALUATION	43
	1.9 GEN	ERAL ASSESSMENT OF COMPLETENESS	44
2	ANALYS	SIS OF KEY TRENDS BY POLLUTANT	45
	2.1 MAI	N POLLUTANTS	45
	2.1.1	Sulphur dioxide (SO _X)	
	2.1.2	Nitrogen oxides (NO _x)	48
	2.1.3	Ammonia (NH ₃)	51
	2.1.4	Non methane volatile organic compounds (NMVOC)	
	2.1.5	Carbon monoxide (CO)	56
	2.2 PAR	TICULATE MATTER	58
	2.2.1	PM10	58
	2.2.2	PM2.5	60
	2.2.3	Black Carbon (BC)	62
	2.3 HEA	VY METALS (PB, CD, HG)	64
	2.3.1	Lead (Pb)	
	2.3.2	Cadmium (Cd)	
	2.3.3	Mercury (Hg)	
		SISTENT ORGANIC POLLUTANTS (POPS)	
	2.4.1	Polycyclic aromatic hydrocarbons (PAH)	
	2.4.2	Dioxins	
	2.4.3	Hexachlorobenzene (HCB)	
	2.4.4	Polychlorinated biphenyl (PCB)	76
3	ENERGY	Y (NFR SECTOR 1)	78
	3.1 OVE	RVIEW OF THE SECTOR	78
		THODOLOGICAL ISSUES	
		E SERIES AND KEY CATEGORIES	
	3.4 QA/	QC AND VERIFICATION	85
	3.5 REC	ALCULATIONS	90
		NNED IMPROVEMENTS	
		ATION (NFR SUBSECTOR 1.A.3.A)	
	3.7.1	Overview	
	3.7.2	Methodological issues	
	3.7.3	Time series and key categories	
	3.7.4	QA/QC and Uncertainty	
	3.7.5	Recalculations	
	3.7.6	Planned improvements	
		D TRANSPORT (NFR SUBSECTOR 1.A.3.B)	
	3.8.1	Overview	
	3.8.2	Methodological issues	
		2.1 Exhaust emissions	
	3.8.2	· · · · · · · · · · · · · · · · · · ·	
	3.8.2	2.3 Emissions from automobile tyre and brake wear	100

	3.8.	2.4 Emissions from automobile road abrasion	100
	3.8.3	Activity data	100
	3.8.4	Time series and key categories	
	3.8.5	QA/QC and Uncertainty	110
	3.8.6	Recalculation	110
	3.8.7	Planned improvements	111
	3.9 RAII	WAYS (NFR SUBSECTOR 1.A.3.C)	
		TIGATION (NFR SUBSECTOR 1.A.3.D)	
	3.10.1	Overview	
	3.10.2	Methodological issues	
	3.10.3	Time series and key categories	
	3.10.4	QA/QC and Uncertainty	
	3.10.5	Recalculations	
	3.10.6	Planned improvements	
		LINE COMPRESSORS (NFR SUBSECTOR 1.A.3.E)	
		L SECTOR: SMALL COMBUSTION AND OFF-ROAD VEHICLES (NFR SUBSECTOR 1.A.4 - 1.A.5)	
	3.12.1	Overview	
	3.12.2	Activity data	
	3.12.3	Methodological issues	
		3.1 NO _X emissions from gas powered plants in the civil sector	
		3.2 Emissions from wood combustion in the civil sector	
	3.12.4	Time series and key categories	
	3.12.5	QA/QC and Uncertainty	
	3.12.6		
		Planned improvements	
		ITIVE EMISSIONS (NFR SUBSECTOR 1.B)	
		Overview	
	3.13.2		
		.2.1 Fugitive emissions from natural gas distribution (1.B.2b)	
	3.13.3	Time series and key categories	
	3.13.4	QA/QC and Uncertainty	
	3.13.5	Recalculation	
		Planned improvements	
		•	
4	IPPU - II	NDUSTRIAL PROCESSES (NFR SECTOR 2)	131
	4.1 OVE	RVIEW OF THE SECTOR	131
		HODOLOGICAL ISSUES	
	4.2.1	Mineral products (2A)	
	4.2.2	Chemical industry (2B)	
	4.2.3	Metal production (2C)	
	4.2.4	Other production $(2G-2H-2L)$	
		E SERIES AND KEY CATEGORIES	
	4.3.1	Mineral products (2A)	
	4.3.2	Chemical industry (2B)	
	4.3.3	Metal production (2C)	
	4.3.4	Other production $(2G-2H-2L)$	
	4.4 OA/	QC AND VERIFICATION	
	_	ALCULATIONS	
	4.5.1	Mineral industry (2A)	
	4.5.2	Metal industry (2C)	
		NNED IMPROVEMENTS	
_			
5	IFFU - S	OLVENT AND OTHER PRODUCT USE (NFR SECTOR 2)	144
		RVIEW OF THE SECTOR	
	5.2 MET	HODOLOGICAL ISSUES	
	5.2.1	Domestic solvent use (2D3a)	
	5.2.2	Decorative coating (2D3d1)	146

	5.2.3 Industrial coating (2D3d2)	
	5.2.4 Degreasing (2D3e)	
	5.2.5 Dry cleaning (2D3f)	
	5.2.6 Chemical products, manufacture and processing (2D3g)	
	5.2.7 Other product use (2D3i)	149
	5.3 TIME SERIES AND KEY CATEGORIES	149
	5.4 QA/QC AND VERIFICATION	154
	5.5 RECALCULATIONS	156
	5.6 PLANNED IMPROVEMENTS	156
6	6 AGRICULTURE (NFR SECTOR 3)	157
	6.1 Overview of the sector	157
	6.2 METHODOLOGICAL ISSUES	159
	6.2.1 Manure management (3B)	
	6.2.1.1 Dairy cattle (3B1a)	
	6.2.1.2 Swine (3B3)	
	6.2.1.3 Poultry (3B4g)	
	6.3 AGRICULTURAL SOILS (3D)	
	6.4 FIELD BURNING OF AGRICULTURAL RESIDUES (3F)	
	6.5 TIME SERIES AND KEY CATEGORIES	
	6.6 QA/QC AND VERIFICATION	
	6.7 RECALCULATIONS	176
	6.8 PLANNED IMPROVEMENTS	177
7	WASTE (NFR SECTOR 5)	178
	7.1 Overview of the sector	178
	7.2 METHODOLOGICAL ISSUES	179
	7.2.1 Solid waste disposal on land (5A)	
	7.2.2 Biological treatment of waste (5B)	
	7.2.3 Waste Incineration (5C1a – 5C1b)	
	7.2.4 Cremation of corpses (5C1bv)	
	7.2.5 Small scale waste burning (5C2)	
	7.2.6 Wastewater treatments (5D)	186
	7.2.7 Other waste (5E)	
	7.3 TIME SERIES AND KEY CATEGORIES	187
	7.4 RECALCULATIONS	194
	7.5 PLANNED IMPROVEMENTS	195
8	RECALCULATIONS AND IMPROVEMENTS	196
	8.1 RECALCULATIONS	
	8.2 PLANNED IMPROVEMENTS	198
9	PROJECTIONS	199
	9.1 THE NATIONAL FRAMEWORK	199
	9.2 Input scenarios	
	9.2.1 The energy scenario	
	9.2.2 The scenario of non-energy activities	202
	9.2.3 The control strategy definition	
	9.3 THE HARMONIZATION PROCESS	207
	9.4 THE EMISSION SCENARIO	
	9.5 THE NEC EMISSION TARGETS	217
10	0 REFERENCES	218
	10.1 Introduction	
	10.2 Analysis of key trends by pollutant	
	10.3 ENERGY (NRF SECTOR 1)	
	10.4 IPPU - INDUSTRIAL PROCESSES (NRF SECTOR 2)	223

10.5 IPPU - SOLVENT AND OTHER PRODUCT USE (NRF SECTOR 2)	224
10.6 AGRICULTURE (NRF SECTOR 3)	
10.7 WASTE (NRF SECTOR 5)	
10.8 RECALCULATIONS AND IMPROVEMENTS	230
10.9 Projections	230
APPENDIX 1 ADDITIONAL INFORMATION ON PROJECTION	232
A1.1 ENERGY SCENARIO (TOTAL VALUES)	
A1.3 ROAD TRANSPORT CONTROL STRATEGY	
APPENDIX 6 SUMMARY INFORMATION ON CONDENSABLE IN PM	241

EXECUTIVE SUMMARY

The Italian Informative Inventory Report (IIR) is edited in the framework of the United Nations Economic Commission for Europe (UNECE) Convention on Long Range Transboundary Air Pollution (CLRTAP). It contains information on the Italian inventory up to the year 2018, including an explanation of methodologies, data sources, QA/QC activities and verification processes carried out during the inventory compilation, with an analysis of emission trends and a description of key categories.

The aim of the document is to facilitate understanding of the calculation of the Italian air pollutant emission data, hence providing a common mean for comparing the relative contribution of different emission sources and supporting the identification of reduction policies.

The Institute for Environmental Protection and Research (ISPRA) has the overall responsibility for the emission inventory submission to CLRTAP, as well as to the *United Nations Framework Convention on Climate Change* (UNFCCC), and is in charge of all the work related to inventory compilation.

In particular, in compliance with the LRTAP Convention, Italy has to submit annually data on national emissions of SO_X , NO_X , NMVOC, CO and NH_3 , and various heavy metals and POPs. The submission consists of the national emission inventory, communicated through compilation of the Nomenclature Reporting Format (NRF), and the informative inventory report (IIR) to ensure the properties of transparency, consistency, comparability, completeness and accuracy.

In the period 1990-2018, emissions from almost all the pollutants described in this report show a downward trend. Reductions are especially relevant for the main pollutants (SO_X -94%; NO_X -68%; CO-69%; NMVOC-54%), lead (-95%) and hexachlorobenzene (-85%). The major drivers for the trend are reductions in the industrial and road transport sectors, due to the implementation of various European Directives which introduced new technologies, plant emission limits, the limitation of sulphur content in liquid fuels and the shift to cleaner fuels. Emissions have also decreased for the improvement of energy efficiency as well as the promotion of renewable energy.

The energy sector is the main source of emissions in Italy with a share of more than 80%, including fugitive emissions, for many pollutants (SO_X 87%; NO_X 91%; CO 94%; PM2.5 88%; BC 94%; PAH 84%). The industrial processes sector is an important source of emissions specifically related to the iron and steel production, at least for particulate matter, heavy metals and POPs, whereas significant emissions of SO_X derive from cement production; on the other hand, the solvent and other product use sector is characterized by NMVOC emissions. The agriculture sector is the main source of NH_3 emissions in Italy with a share of 94% in national total. Finally, the waste sector, specifically waste incineration, is a relevant source for Cd (10%).

Emission figures of the Italian emission inventory and other related documents are publicly available at http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni.

1 INTRODUCTION

1.1 BACKGROUND INFORMATION ON THE CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION

The 1979 Geneva *Convention on Long-range Transboundary Air Pollution*, contributing to the development of international environmental law, is one of the fundamental international means for the protection of the human health and the environment through the intergovernmental cooperation.

The fact that air pollutants could travel several thousands of kilometres before deposition and damage occurred outlined the need for international cooperation.

In November 1979, in Geneva, 34 Governments and the European Community (EC) signed the Convention. The *Convention on Long-range Transboundary Air Pollution* was ratified by Italy in the year 1982 and entered into force in 1983. It has been extended by the following eight specific protocols:

- The 1984 Protocol on Long-term Financing of the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP); 42 Parties. Entered into force on 28th January 1988.
- The 1985 Protocol on the Reduction of Sulphur Emissions or their Transboundary Fluxes by at least 30 per cent; 23 Parties. Entered into force on 2nd September 1987.
- The 1988 Protocol concerning the Control of Nitrogen Oxides or their Transboundary Fluxes; 31 Parties. Entered into force on 14th February 1991.
- The 1991 Protocol concerning the Control of Emissions of Volatile Organic Compounds or their Transboundary Fluxes; 22 Parties. Entered into force on 29th September 1997.
- The 1994 Protocol on Further Reduction of Sulphur Emissions; 27 Parties. Entered into force on 5th August 1998.
- The 1998 Protocol on Heavy Metals; 28 Parties. Entered into force on 29 December 2003.
- The 1998 Protocol on Persistent Organic Pollutants (POPs); 28 Parties. Entered into force on 23rd October 2003.
- The 1999 Protocol to Abate Acidification, Eutrophication and Ground-level Ozone; 23 Parties. Entered into force on 17th May 2005. (Guidance documents to Protocol adopted by decision 1999/1).

The following table shows the dates of signature and ratification of Convention and Protocols for Italy.

Table 1.1 Dates of signature and ratification of the UNECE Convention and Protocols

	SIGNATURE	RATIFICATION
1979 Convention	14/11/1979	15/07/1982
1984 EMEP Protocol	28/09/1984	12/01/1989
1985 Sulphur Protocol	09/07/1985	05/02/1990
1988 NO _X Protocol	01/11/1988	19/05/1992
1991 VOC Protocol	19/11/1991	30/06/1995
1994 Sulphur Protocol	14/06/1994	14/09/1998
1998 Heavy Metals Protocol	24/06/1998	
1998 POPs Protocol	24/06/1998	20/06/2006
1999 Multi-effect Protocol (reviewed in 2012)	01/12/1999	

The following classes of pollutants should be included in the emission inventory:

Main Pollutants

- Sulphur oxides (SO_X), in mass of SO₂;
- Nitrous oxides (NO_X), in mass of NO₂;
- Non-methane volatile organic compounds (NMVOC);
- Ammonia (NH₃);
- Carbon monoxide (CO).

Particulate matter

- TSP, total suspended particulate;
- PM10, particulate matter less than 10 microns in diameter;
- PM2.5, particulate matter less than 2.5 microns in diameter;
- Black carbon.

Heavy Metals

- Priority Metals: Lead (Pb), Cadmium (Cd) and Mercury (Hg);
- Other metals: Arsenic (As), Chrome (Cr), Copper (Cu), Nickel (Ni), Selenium (Se) and Zinc (Zn).

Persistent organic pollutants (POPs)

- As specified in Annex II of the POPs Protocol, including Polychlorinated Biphenyls (PCBs);
- As specified in Annex III of the POPs Protocol: Dioxins (Diox), Polycyclic Aromatic Hydrocarbons (PAHs), Hexachlorobenzene (HCB).

1.2 NATIONAL INVENTORY

As a Party to the *United Nations Economic Commission for Europe* (UNECE) *Convention on Long Range Transboundary Air Pollution* (CLRTAP), Italy has to submit annually data on emissions of air pollutants in order to fulfil obligations, in compliance with the implementation of Protocols under the Convention. Parties are required to report on annual national emissions of SO_X, NO_X, NMVOC, CO and NH₃, and various heavy metals and POPs according to the *Guidelines for Reporting Emission Data under the Convention on Long-range Transboundary Air Pollution* (UNECE, 2008). The same data are submitted also in the framework of the National Emission Ceiling Directive of the European Union (EU, 2016).

Specifically, the submission consists of the national LRTAP emission inventory, communicated through compilation of the *Nomenclature Reporting Format* (NRF), and the *Informative Inventory Report* (IIR).

The Italian informative inventory report contains information on the national inventory for the year 2018, including descriptions of methods, data sources, QA/QC activities carried out and a trend analysis. The inventory accounts for anthropogenic emissions of the following substances: sulphur oxides (SO_x), nitrogen

oxides (NO_X), ammonia (NH₃), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), total suspended particulate (TSP), particulate matter, particles of size <10 μ m, (PM10), particulate matter, particles of size < 2.5 μ m, (PM2.5), black carbon (BC), lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), selenium (Se), zinc (Zn), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAH), dioxins (Diox), hexachlorobenzene (HCB). Other pollutants are reported as not estimated; more in details polycyclic aromatic hydrocarbons have not been estimates for each compound for all the sectors and further investigation is planned for the reporting of these emissions.

Detailed information on emission figures of primary pollutants, particulate matter, heavy metals and persistent organic pollutants as well as estimation procedures are provided in order to improve the transparency, consistency, comparability, accuracy and completeness of the inventory provided.

The national inventory is updated annually in order to reflect revisions and improvements in the methodology and the availability of new information. Changes are applied retrospectively to earlier years, which accounts for any difference in previously published data.

Total emissions by pollutant from 1990 to 2018 are reported in Table 1.2.

Table 1.2 Emission time series by pollutant

		1990	1995	2000	2005	2010	2015	2016	2017	2018
SOx	Gg	1,784	1,322	756	409	218	124	117	115	110
NOx	Gg	2,123	1,987	1,505	1,291	945	732	712	672	669
NMVOC	Gg	1,965	2,022	1,601	1,361	1,137	917	901	947	913
NH ₃	Gg	467	453	458	426	387	379	386	379	366
CO	Gg	6,797	7,072	4,749	3,494	3,114	2,304	2,228	2,333	2,082
As	Mg	37	27	46	40	45	46	38	47	48
Cd	Mg	11	11	10	10	6	5	6	5	5
Cr	Mg	86	69	44	49	40	35	35	35	35
Cu	Mg	186	209	215	227	201	190	182	169	176
Hg	Mg	15	14	14	12	8	7	7	7	7
Ni	Mg	114	110	107	112	41	30	30	30	29
Pb	Mg	4,289	2,005	967	299	221	207	212	214	214
Se	Mg	10	11	12	12	11	12	11	11	11
Zn	Mg	978	986	946	1,028	921	862	881	924	940
TSP	Gg	355	348	308	282	292	240	235	243	222
PM10	Gg	296	290	252	227	238	194	189	196	177
PM2.5	Gg	229	226	197	176	198	159	155	162	143
BC	Gg	47	46	42	38	32	22	21	20	19
PAH	Mg	90	92	60	64	87	71	70	74	67
Dioxin	$g\ ITe_q$	508	488	410	334	316	281	279	296	277
HCB	kg	67	55	30	24	20	11	11	11	10
PCB	kg	152	163	152	174	128	109	114	117	116

The NRF files and other related documents can be found on website at the following address:

http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni.

1.3 Institutional arrangements

The Institute for Environmental Protection and Research (ISPRA) has the overall responsibility for the compilation of the national emission inventory and submissions to CLRTAP. The Institute is also responsible for the communication of pollutants under the NEC directive as well as, jointly with the Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), the development of emission scenarios, as established by the Legislative Decree n. 171 of 21st May 2004. Every four years, from 2017 with

reference to 2015 emissions, ISPRA shall provide the disaggregation of the national inventory at provincial level as instituted by the Legislative Decree n. 81 of 30 May 2018. Moreover, ISPRA is the single entity in charge of the development and compilation of the national greenhouse gas emission inventory as indicated by the Legislative Decree n. 51 of 7th March 2008. The Ministry for the Environment, Land and Sea is responsible for the endorsement and for the communication of the inventory to the Secretariat of the different conventions.

The *Italian National System* currently in place is fully described in the document '*National Greenhouse Gas Inventory System in Italy*' (ISPRA, 2018).

A specific unit of the Institute is responsible for the compilation of the *Italian Atmospheric Emission Inventory* and the *Italian Greenhouse Gas Inventory* in the framework of both the *Convention on Climate Change* and the *Convention on Long Range Transboundary Air Pollution*. The whole inventory is compiled by the Institute; scientific and technical institutions and consultants may help in improving information both on activity data and emission factors of specific activities. All the measures to guarantee and improve the transparency, consistency, comparability, accuracy and completeness of the inventory are undertaken.

ISPRA bears the responsibility for the general administration of the inventory, co-ordinates participation in review processes, publishes and archives the inventory results.

Specifically, ISPRA is responsible for all aspects of national inventory preparation, reporting and quality management. Activities include the collection and processing of data from different data sources, the selection of appropriate emissions factors and estimation methods consistent with the EMEP/EEA guidebook, the *IPCC 1996 Revised Guidelines*, the *IPCC Good Practice Guidance and Uncertainty management* and the *IPCC Good Practice Guidance for land use, land-use change and forestry*, and the *IPCC 2006 Guidelines*, the compilation of the inventory following the QA/QC procedures, the preparation of the *Informative Inventory Report* and the reporting through the *Nomenclature Reporting Format*, the response to review checks, the updating and data storage.

Different institutions are responsible for statistical basic data and data publication, which are primary to ISPRA for carrying out estimates. These institutions are part of the *National Statistical System* (Sistan), which provides national official statistics, and therefore are asked periodically to update statistics; moreover, the *National Statistical System* ensures the homogeneity of the methods used for official statistics data through a coordination plan, involving the entire public administration at central, regional and local levels.

The main Sistan products, which are primarily necessary for the inventory compilation, are:

- National Statistical Yearbooks, Monthly Statistical Bulletins, by ISTAT (National Institute of Statistics);
- Annual Report on the Energy and Environment, by ENEA (Agency for New Technologies, Energy and the Environment);
- National Energy Balance (annual), Petrochemical Bulletin (quarterly publication), by MSE (Ministry of Economic Development);
- Transport Statistics Yearbooks, by MIT (Ministry of Transportation);
- Annual Statistics on Electrical Energy in Italy, by TERNA (National Independent System Operator);
- Annual Report on Waste, by ISPRA;
- National Forestry Inventory, by MIPAAF (Ministry of Agriculture, Food and Forest Policies).

The national emission inventory itself is a Sistan product (ISPRA).

Other information and data sources are used to carry out emission estimates, which are generally referred to in Table 1.3 in the following section 1.5.

1.4 Inventory preparation process

ISPRA has established fruitful cooperation with several governmental and research institutions as well as industrial associations, which helps improving information about some leading categories of the inventory. Specifically, these activities aim at the improvement of provision and collection of basic data and emission factors, through plant-specific data, and exchange of information on scientific researches and new sources. Moreover, when in depth investigation is needed and estimates are affected by a high uncertainty, sectoral studies are committed to *ad hoc* research teams or consultants.

ISPRA also coordinates with different national and regional authorities and private institutions for the cross-checking of parameters and estimates, as well as with *ad hoc* expert panels, in order to improve the completeness and transparency of the inventory.

The main basic data needed for the preparation of the national emission inventory are energy statistics, published by the Ministry of Economic Development (MSE) in the National Energy Balance (BEN), statistics on industrial and agricultural production, published by the National Institute of Statistics (ISTAT), statistics on transportation, provided by the Ministry of Transportation (MIT), and data supplied directly by the relevant professional associations.

Emission factors and methodologies used in the estimation process are consistent with the EMEP/EEA Guidebook, the IPCC Guidelines and Good Practice Guidance as well as supported by national experiences and circumstances.

For the industrial sector, emission data collected through the national Pollutant Release and Transfer Register (Italian PRTR), the Large Combustion Plant (LCP) Directive and in the framework of the European Emissions Trading Scheme have yielded considerable developments in the inventory of the relevant sectors. In fact, these data, even if not always directly used, are considered as a verification of emission estimates and improve national emissions factors as well as activity data figures.

In addition, final estimates are checked and verified also in view of annual environmental reports by industries.

For large industrial point sources, emissions are registered individually, when communicated, based upon detailed information such as fuel consumption.

Other small plants communicate their emissions which are also considered individually.

Emission estimates are drawn up for each sector. Final data are communicated to the UNECE Secretariat filling in the NRF files.

The process of the inventory preparation is carried out annually. In addition to a new year, the entire time series is checked and revised during the annual compilation of the inventory. Recalculations are elaborated on account of changes in the methodologies used to carry out emission estimates, changes due to different allocation of emissions as compared to previous submissions and changes due to error corrections. The inventory may also be expanded by including categories not previously estimated if enough information on activity data and suitable emission factors have been identified and collected. Information on the major recalculations is provided in the sectoral chapter of the report.

All the reference material, estimates and calculation sheets, as well as the documentation on scientific papers and the basic data needed for the inventory compilation, are stored and archived at the Institute. After each reporting cycle, all database files, spreadsheets and electronic documents are archived as 'read-only-files' so that the documentation and estimates could be traced back during the new year inventory compilation or a review process.

Technical reports and emission figures are publicly accessible on the web at the address http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni.

1.5 METHODS AND DATA SOURCES

An outline of methodologies and data sources used in the preparation of the emission inventory for each sector is provided in the following. In Table 1.3 a summary of the activity data and sources used in the inventory compilation is reported.

Table 1.3 Main activity data and sources for the Italian Emission Inventory

SECTOR	ACTIVITY DATA	SOURCE
1 Energy		
1A1 Energy Industries	Fuel use	Energy Balance - Ministry of Economic Development Major national electricity producers European Emissions Trading Scheme
1A2 Manufacturing Industries and Construction	Fuel use	Energy Balance - Ministry of Economic Development Major National Industry Corporation European Emissions Trading Scheme
1A3 Transport	Fuel use Number of vehicles Aircraft landing and take-off cycles and maritime activities	Energy Balance - Ministry of Economic Development Statistical Yearbooks - National Statistical System Statistical Yearbooks - Ministry of Transportation Statistical Yearbooks - Italian Civil Aviation Authority (ENAC) Maritime and Airport local authorities
1A4 Residential-public-commercial sector	Fuel use	Energy Balance - Ministry of Economic Development
1B Fugitive Emissions from Fuel	Amount of fuel treated, stored, distributed	Energy Balance - Ministry of Economic Development Statistical Yearbooks - Ministry of Transportation Major National Industry Corporation
2 Industrial Processes	Production data	National Statistical Yearbooks- National Institute of Statistics International Statistical Yearbooks-UN European Emissions Trading Scheme European Pollutant Release and Transfer Register Sectoral Industrial Associations
2D Solvent and Other Product Use	Amount of solvent use	National Environmental Publications - Sectoral Industrial Associations International Statistical Yearbooks - UN
3 Agriculture	Agricultural surfaces Production data Number of animals Fertilizer consumption	Agriculture Statistical Yearbooks - National Institute of Statistics Sectoral Agriculture Associations
4 Land Use, Land Use Change and Forestry	Forest and soil surfaces Amount of biomass Biomass burnt Biomass growth	Statistical Yearbooks - National Institute of Statistics State Forestry Corps National and Regional Forestry Inventory Universities and Research Institutes
5 Waste	Amount of waste	National Waste Cadastre - Institute for Environmental Protection and Research
	1	

Methodologies are consistent with the *EMEP/EEA Emission Inventory Guidebook*, *Revised 1996* and 2006 *IPCC Guidelines*, and *IPCC Good Practice Guidance* (EMEP/CORINAIR, 2007; EMEP/EEA, 2009; EMEP/EEA, 2013; EMEP/EEA, 2016; EMEP/EEA, 2019; IPCC, 1997; IPCC, 2000; IPCC, 2006); national emission factors are used as well as default emission factors from international guidebooks, when national data are not available. The development of national methodologies is supported by background documents.

The most complete document describing national methodologies used in the emission inventory compilation is the *National Inventory Report*, submitted in the framework of the UN *Convention on Climate Change* and the *Kyoto Protocol* (ISPRA, 2020 [a]).

Activity data used in emission calculations and their sources are briefly described here below.

In general, for the energy sector, basic statistics for estimating emissions are fuel consumption published in the national Energy Balance by the Ministry of Economic Development. Additional information for electricity production is provided by the major national electricity producers and by the major national industry corporation. On the other hand, basic information for road transport, maritime and aviation, such as the number of vehicles, harbour statistics and aircraft landing and take-off cycles are provided in statistical yearbooks published both by the National Institute of Statistics and the Ministry of Transportation. Other data are communicated by different category associations.

Data from the Italian Emissions Trading Scheme database (ETS) are incorporated into the national inventory whenever the sectoral coverage is complete; in fact, these figures do not always entirely cover the energy categories whereas national statistics, such as the national energy balance and the energy production and consumption statistics, provide the complete basic data needed for the Italian emission inventory. However, the analysis of data from ETS is used to develop country-specific emission factors and check activity data levels. In this context, ISPRA is also responsible for developing, operating and maintaining the national registry under Directive 2003/87/CE as instituted by the Legislative Decree 51 of March 7th 2008; the Institute performs this tasks under the supervision of the national Competent Authority for the implementation of directive 2003/87/CE, amended by Directive 2009/29/EC, jointly established by the Ministry for Environment, Land and Sea and the Ministry for Economic Development.

For the industrial sector, the annual production data are provided by national and international statistical yearbooks. Emission data collected through the national Pollutant Release and Transfer Register (Italian PRTR) are also used in the development of emission estimates or considered as a verification of emission estimates for some specific categories. Italian PRTR data are reported by operators to national and local competent authorities for quality assessment and validation. ISPRA collects facilities' reports and supports the validation activities at national and at local level. ISPRA communicates to the Ministry for the Environment, Land and Sea and to the European Commission within 31st March of the current year for data referring to two years earlier. These data are used for the compilation of the inventory whenever they are complete in terms of sectoral information; in fact, industries communicate figures only if they exceed specific releases thresholds; furthermore, basic data such as fuel consumption are not required and production data are not split by product but reported as an overall value. Anyway, the national PRTR is a good basis for data checks and a way to facilitate contacts with industries which supply, under request, additional information as necessary for carrying out sectoral emission estimates.

In addition, final emissions are checked and verified also considering figures reported by industries in their annual environmental reports.

Both for energy and industrial processes, emissions of large industrial point sources are registered individually; communication also takes place in the framework of the European Directive on Large Combustion Plants, based upon detailed information such as fuel consumption. Other small plants communicate their emissions which are also considered individually.

For the other sectors, i.e. for solvents, the amount of solvent use is provided by environmental publications of sector industries and specific associations as well as international statistics.

For agriculture, annual production data and number of animals are provided by the National Institute of Statistics and other sectoral associations.

For waste, the main activity data are provided by the Institute for Environmental Protection and Research.

In case basic data are not available proxy variables are considered; unpublished data are used only if supported by personal communication and confidentiality of data is respected.

All the material and documents used for the inventory emission estimates are stored at the Institute for Environmental Protection and Research. The inventory is composed by spreadsheets to calculate emission estimates; activity data and emission factors as well as methodologies are referenced to their data sources.

A 'reference' database has also been developed to increase the transparency of the inventory; at the moment, it is complete as far as references to greenhouse gas emissions are concerned.

1.6 KEY CATEGORIES

A key category analysis of the Italian inventory is carried out according to the Approach 1 method described in the EMEP/EEA Guidebook (EMEP/EEA, 2019). According to these guidelines, a key category is defined as an emission category that has a significant influence on a country's inventory in terms of the absolute level in emissions. Key categories are those which, when summed together in descending order of magnitude, add up to over 80% of the total emissions.

National emissions have been disaggregated into the categories reported in the National Format Report; details vary according to different pollutants in order to reflect specific national circumstances. Results are reported in the following tables for the year 1990 (Table 1.4) and 2018 (Table 1.5) by pollutant.

The trend analysis has also been applied considering 1990 and 2018. The results are reported in Table 1.6.

 Table 1.4 Key categories for the Italian Emission Inventory in 1990

	Key categories in 1990													Total (%)
SO _x	1A1a (43.1%)	1A1b (10.8%)	1A2c (7.2%)	1A3d ii (4.4%)	1A4b i (4.1%)	1B2a iv (3.8%)	1A2gvii i (3.7%)	1A3b i (3.4%)						80.5
NO_x	1A3b i (27.8%)	1A1a (19.2%)	1A3b iii (15.8%)	1A2f (5.6%)	1A4c ii (4.8%)	1A3d ii (4.5%)	1A3b ii (3.0%)							80.8
NH ₃	3Da2a (20.8%)	3B1a (19.9%)	3B1b (19.0%)	3Da1 (15.1%)	3B3 (7.8%)									82.6
NMVOC	1A3b i (21.9%)	2D3d (13.8%)	1A3b iv (7.6%)	1A3b v (6.1%)	2D3a (5.9%)	1A4b i (5.1%)	2D3g (3.9%)	1A4c ii (3.5%)	2D3i (3.3%)	1B2a v (3.0%)	2D3e (2.7%)	3B1a (2.5%)	3B1b (2.4%)	81.7
co	1A3b i (60.7%)	1A4b i (11.6%)	1A3b iv (7.2%)	1A4c ii (4.1%)										83.6
PM10	1A4b i (22.7%)	1A1a (12.8%)	1A3b i (6.5%)	1A4c ii (5.4%)	1A3b iii (4.5%)	3Dc (4.3%)	1A3b ii (3.6%)	1A2f (3.4%)	2A1 (3.3%)	1A3d ii (3.2%)	3B4g ii (2.7%)	1A3b vi (2.5%)	2C1 (2.5%)	
	1A2a (2.2%)	1A2c (1.9%)												81.4
PM2.5	1A4b i (29.1%)	1A1a (10.9%)	1A3b i (8.5%)	1A4c ii (7.0%)	1A3b iii (5.8%)	1A3b ii (4.6%)	1A3d ii (4.1%)	1A2f (3.4%)	2C1 (2.5%)	2A1 (2.4%)	1A2a (2.2%)			80.5
ВС	1A3b i (22.2%)	1A4c ii (19.2%)	1A3b iii (14.1%)	1A3b ii (12.4%)	1A4b i (11.1%)	1A2g vii (5.0%)								84.0
Pb	1A3b i (77.7%)	1A3b iv (5.2%)												82.9
Cd	1A2b (25.9%)	1A2a (19.0%)	2C1 (11.9%)	1A4b i (9.1%)	1A2f (5.2%)	2G (4.6%)	5C2 (3.9%)	1A4a i (3.4%)						83.0
Hg	1B2d (22.3%)	2B10a (18.5%)	2C1 (15.1%)	1A2b (10.7%)	1A2f (8.4%)	1A1a (6.5%)								81.5
РАН	2C1 (53.7%)	1A4b i (35.3%)				, , ,								89.0
Dioxin	1A4a i (20.4%)	1A2a (16.0%)	1A4b i (13.8%)	2C1 (13.2%)	5C1a (8.4%)	5C1b i (6.1%)	1A2b (5.3%)							83.3
НСВ	3Df (70.3)	5C1b iv (15.5%)	,											85.8
PCB	2C1 (60.5%)	1A2a (26.1%)												86.6

1 Energy 2 IPPU - Industry 2 IPPU - Solvent and product use 5 Waste 3 Agriculture

 Table 1.5 Key categories for the Italian Emission Inventory in 2018

	Key categories in 2018											Total (%)		
SO _x	1A3d ii (19.7%)	1A2f (16.2%)	1B2a iv (14.2%)	1A1a (8.0%)	1A1b (5.6%)	2B10a (5.5%)	1A4b i (5.5%)	2A1 (5.3%)	1A2a (4.3%)					84.2
NO _x	1A3b i (23.2%)	1A3b iii (12.8%)	1A3d ii (11.0%)	1A3b ii (6.8%)	1A4b i (6.1%)	1A2f (5.5%)	1A4a i (5.1%)	1A4c ii (4.6%)	1A1a (4.2%)	3Da2a (3.0)				82.3
NH ₃	3Da2a (19.5%)	3B1b (18.3%)	3B1a (17.3%)	3Da1 (13.8%)	3B3 (8.5%)	3B4g ii (3.6%)								81.0
NMVOC	2D3d (16.7%)	1A4b i (16.0%)	2D3a (9.8%)	2D3g (5.9%)	1A3b v (5.2%)	3B1a (4.7%)	3B1b (4.3%)	1A3b iv (3.6%)	1A4a i (3.1%)	2D3 i (2.9%)	1A3b i (2.6%)	2H2 (2.4%)	1B2b (2.2%)	
	3Da2a (2.0%)													81.4
СО	1A4b i (60.1%)	1A3b i (12.0%)	1A3b iv (5.8%)	1A3d ii (2.9%)										80.9
PM10	1A4b i (52.7%)	3Dc (5.8%)	1A3b vi (4.9%)	1A3d ii (3.2%)	2C1 (2.8%)	1A2f (2.7%)	2A1 (2.5%)	1A3bvii (2.5%)	1A3b i (2.3%)	2G (1.9%)				81.3
PM2.5	1A4b i (64.4%)	1A3d ii (3.9%)	1A3b vi (3.3%)	1A2f (2.9%)	1A3b i (2.9%)	2C1 (2.9%)								80.3
ВС	1A4b i (44.5%)	1A3b i (17.1%)	1A3b ii (6.8%)	1A3b iii (6.0%)	1A4c ii (5.6%)	1A3d ii (5.2%)								85.1
Pb	2C1 (34.0%)	1A2f (29.7%)	1A2a (10.9%)	2G (5.5%)										80.1
Cd	1A2a (24.1%)	2C1 (20.9%)	1A2f (10.1%)	5C2 (9.5%)	1A4b i (7.5%)	2G (7.3%)	1A3b i (5.0%)							84.5
Hg	2C1 (43.0%)	1B2d (10.2%)	1A2a (9.4%)	1A2f (8.3%)	1A2b (7.4%)	1A1a (6.8%)								85.2
РАН	1A4b i (76.9%)	2C1 (13.9%)												90.8
Dioxin	1A4b i (36.2%)	2C1 (32.1%)	1A2b (18.5%)											86.8
НСВ	3Df (29.2%)	1A4a i (18.4%)	1A2a (16.9%)	1A4b i (15.2%)	1A1a (7.3%)									87.0
РСВ	2C1 (76.0%)	1A4b i (13.3%)												89.4

1 Energy 2 IPPU - Solvent and product use 5 Waste 2 IPPU - Industry 3 Agriculture

Table 1.6 Key categories for the Italian Emission Inventory in trend 1990-2018

	Key categories in trend										Total (%)			
SO_X	1A1a (29.3%)	1A3d ii (12.8%)	1A2f (11.6%)	1B2a iv (8.7%)	1A2c (5.1%)	1A1b (4.4%)	2A1 (3.4%)	1A4a i (3.1%)	1A3b i (2.7%)					81.1
NO_X	1A1a (26.1%)	1A3dii (11.3%)	1A3b i (8.1%)	1A4a i (8.0%)	1A3b ii (6.7%)	1A4b i (6.4%)	1A3b iii (5.3%)	1A2c (3.4%)	3Da2a (3.4%)	1A4c i (3.0%)				81.7
NH ₃	3B1a (15.5%)	1A3b i (8.2%)	3B4a (8.0%)	3Da1 (7.8%)	3Da2a (7.6%)	3Da2c (7.5%)	3B4g i (6.5%)	1B2d (6.0%)	3B4g ii (5.7%)	5B2 (4.9%)	3B1b (4.6%)			82.3
NMVOC	1A3b i (27.7%)	1A4b i (15.7%)	1A3b iv (5.7%)	2D3a (5.5%)	1A4a i (4.2%)	2D3d (4.2%)	1A4c ii (3.9%)	3B1a (3.1%)	2D3g (2.8%)	3B1b (2.8%)	1B2a v (2.1%)	2D3e (1.5%)	2D3h (1.4%)	80.7
СО	1A3b i (43.2%)	1A4b i (43.1%)												86.2
PM10	1A4b i (37.3%)	1A1a (15.5%)	1A4c ii (5.4%)	1A3b i (5.2%)	1A3biii (4.4%)	1A3b ii (3.3%)	1A3b vi (2.9%)	1A2a (2.4%)	1A1b (2.2%)	3Dc (1.9%)				80.6
PM2.5	1A4b i (42.5%)	1A1a (12.9%)	1A4c ii (6.9%)	1A3b i (6.7%)	1A3b iii (5.6%)	1A3b ii (4.2%)	1A2a (2.4%)							81.1
ВС	1A4b i (39.7%)	1A4c ii (16.2%)	1A3b iii (9.6%)	1A3b ii (6.7%)	1A3b i (6.1%)	1A2gvii (4.8%)								83.2
Pb	1A3b i (42.5%)	2C1 (17.9%)	1A2f (15.3%)	1A2a (4.5%)										80.2
Cd	1A2b (34.2%)	2C1 (13.7%)	5C2 (8.5%)	1A2a (7.7%)	1A2f (7.5%)	1A3b i (4.8%)	2G (4.0%)							80.4
Hg	2C1 (37.8%)	2B10a (25.0%)	1B2d (16.3%)	1A2b (4.5%)										83.6
РАН	1A4b i (46.0%)	2C1 (44.0%)												90.0
Dioxin	1A4b i (19.3%)	1A4a i (16.7%)	2C1 (16.3%)	1A2a (13.6%)	1A2b (11.3%)	5C1a (7.2%)								84.4
НСВ	3Df (36.4%)	1A4a i (14.8%)	5C1b iv (13.0%)	1A4b i (12.5%)	1A2a (9.1%)									85.9
PCB	1A2a (42.4%)	2C1 (33.5%)	1A4b i (15.6%)											91.4

1 Energy	2 IPPU - Solvent and product use	5 Waste	
2 IPPU - Industry	3 Agriculture		

1.7 QA/QC AND VERIFICATION METHODS

ISPRA has elaborated an inventory QA/QC procedures manual which describes specific QC procedures to be implemented during the inventory development process, facilitates the overall QA procedures to be conducted, as far as possible, on the entire inventory and establishes quality objectives (ISPRA, 2014). Specific QA/QC procedures and different verification activities implemented thoroughly in the current inventory compilation are figured out in the annual QA/QC plans (ISPRA, 2020 [b]).

Quality control checks and quality assurance procedures together with some verification activities are applied both to the national inventory as a whole and at sectoral level. Future planned improvements are prepared for each sector by the relevant inventory compiler; each expert identifies areas for sectoral improvement based on his own knowledge and in response to different inventory review processes.

In addition to *routine* general checks, source specific quality control procedures are applied on a case by case basis, focusing on key categories and on categories where significant methodological and data revision have taken place or new sources.

Checklists are compiled annually by the inventory experts and collected by the QA/QC coordinator. These lists are also registered in the 'reference' database.

General QC procedures also include data and documentation gathering. Specifically, the inventory analyst for a source category maintains a complete and separate project archive for that source category; the archive includes all the materials needed to develop the inventory for that year and is kept in a transparent manner.

Quality assurance procedures regard different verification activities of the inventory.

Feedbacks for the Italian inventory derive from communication of data to different institutions and/or at local level. Emission figures are also subjected to a process of re-examination once the inventory, the inventory related publications and the national inventory reports are posted on website, specifically www.isprambiente.gov.it.

The preparation of environmental reports where data are needed at different aggregation levels or refer to different contexts, such as environmental and economic accountings, is also a check for emission trends. At national level, for instance, emission time series are reported in the Environmental Data Yearbooks published by the Institute, in the Reports on the State of the Environment by the Ministry for the Environment, Land and Sea and, moreover, figures are communicated to the National Institute of Statistics to be published in the relevant Environmental Statistics Yearbooks as well as used in the framework of the EUROSTAT NAMEA Project.

Technical reviews of emission data submitted under the CLRTAP convention are undertaken periodically for each Party. Specifically, an in-depth review of the Italian inventory was carried out in 2010 and 2013 (UNECE, 2010; UNECE, 2013). A summary of the main findings of the last review can be found in the relevant technical report at the address

http://www.ceip.at/fileadmin/inhalte/emep/pdf/2013 s3/ITALY-Stage3ReviewReport-2013.pdf.

Moreover, under the European National Emission Ceiling Directive (NECD), an in-depth review has been conducted in 2017, 2018 and in 2010 (EU, 2017; EU 2018; EU 2019). The main resulting findings and how the recommendations were addressed are reported in the following table.

Recommendations from TERT, considering revised estimates (RE) and technical corrections (TC)

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
IT-1A4ai- 2017-0002 IT-1A4ai- 2018-0002	Yes	1A4ai Commercial/Institutional: Stationary, NMVOC, 2000- 2017	The TERT noted that the 2006 Guidebook is used for estimating emissions from several smaller sources. While during the 2018 NECD Review, Italy	No	Additional information has been included in the IIR while emission factors from 2006

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			confirmed that the recommendation would be addressed by the 2019 submission, the TERT found that it has not been implemented yet. In response to a question raised during the 2019 review, Italy explained that this recommendation will be implemented for the 2020 submission. The TERT recommends that Italy updates this methodology in line with 2016 EMEP/EEA Guidebook in the next submission and states more precisely in the IIR the methods used for the category 1A4a. The TERT kindly notes that progress in the implementation of this improvement will be reviewed in 2020.		EMEP/EEA Guidebook have not been updated
IT-1A4bi- 2017-0001 IT-1A4bi- 2018-0002	Yes	1A4bi Residential: Stationary, NOx, NMVOC, PM2.5, 2000- 2017	The TERT noted that the 2007 EMEP/Corinair Guidebook is used for estimating emissions from several smaller sources. While during the 2018 NECD Review, Italy confirmed that the recommendation would be addressed by the 2019 submission, the TERT found that it has not been implemented yet. In response to a question raised during the 2019 review, Italy explained that this recommendation will be implemented for the 2020 submission. The TERT recommends that Italy updates this methodology in line with 2016 EMEP/EEA Guidebook in the next submission and states more precisely in the IIR the methods used for the category 1A4bi. The TERT kindly notes that progress in the implementation of this improvement will be reviewed in 2020.	No	Additional information has been included in the IIR while emission factors from 2006 EMEP/EEA Guidebook have not been updated
IT-2A5a- 2018-0001	No	2A5a Quarrying and Mining of Minerals Other Than Coal, PM2.5, 1990-2017	The TERT noted with reference to NFR tables that emissions are not estimated. This was raised during the 2017 and 2018 NECD review. In response to a question raised during the review Italy indicates that it has not found up to now relevant additional information that could help	No	Not implemented

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			in improving the first emission estimates that have not been reported and stated that it will include these draft estimates in the next submission on the basis of USGS statistics and 2016 EMEP/EEA guidebook EFs. The TERT noted that the issue is below the threshold of significance for a technical correction but the TERT has also identified that other PM2.5 sources are not estimated in the IPPU inventory (see IT-2A5b- 2017-0001) which could exceed the threshold of significance if added all together. The TERT recommends that Italy includes the emission estimates in the next submission with the methodology description		
IT-2A5b- 2018-0001	No	2A5b Construction and Demolition, PM2.5, 1990-2017	The TERT notes with reference to NFR tables that emissions are not estimated. This was raised during the 2017 and 2018 NECD review. In response to a question raised during the review Italy indicates that it has not found up to now relevant additional information to estimate emissions from this category. The TERT noted that the issue is below (but close to) the threshold of significance for a technical correction based on population and mean IEF value of EU reporting countries. The TERT has also identified that other PM2.5 sources are not estimated in the IPPU inventory (see IT-2A5a-2017-0001) which could exceed the threshold of significance if added all together. The TERT recommends that Italy develop a methodology to estimate these emissions in the next submission by using for example relevant ratios from neighbouring countries.	No	Not implemented

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
IT-2D3e- 2017- 0001/ IT- 2D3e- 2018-0001	No	2D3e Degreasing, NMVOC, 1990-2017	The TERT noted with reference to previous reviews, that a recommendation has not been implemented to date regarding the improvement of the 2D3e methodology. The TERT proposed Italy two methodologies: obtaining the information on the composition of cleaning products regarding the different NMVOC compounds or in case it would be not possible to take into account the whole amount of used cleaning products (not only the solvent part), apply the 2016 EMEP/EEA Guidebook Tier 2 emission factor with the abatement efficiency, if appropriate, and calculate NMVOC emissions. This was raised during the 2017 and 2018 NECD review. In response to a question raised during this review Italy explained they were not able to collect additional information for the 2019 submission, but they will try again for the 2020 submission or, if not possible, they will apply the relevant 2016 EMEP/EEA Guidebook EF. The TERT noted that the issue is below the threshold of significance for a technical correction. The TERT recommends that Italy investigates these options and includes the new estimates in its next submission.	No	Implemented considering all the solvent used as emitted.
IT-2A1- 2019-0001	Yes	2A1 Cement Production, PM2.5, 2000-2017	The TERT noted that PM2.5 emissions are equal to the estimate for PM10 with reference to NFR tables. According to the PM EF from the 2016 EMEP/EEA Guidebook, the TERT would expect that for this category, PM10 estimates are higher than (rather than equal to) PM2.5 estimates. In response to a question raised during the review Italy agreed with the TERT and indicate that it will update the PM2.5 EF in	No	Implemented

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			accordance with the 2016 EMEP/EEA Guidebook for the next submission. The TERT noted that the issue is below the threshold of significance for a technical correction. The TERT recommends that Italy correct the PM2.5 EF for this category before the next submission.		
IT-2B3- 2019-0001	No	2B3 Adipic Acid Production, PM2.5, 2004	The TERT noted, with reference to NFR tables, that the PM2.5 estimate is equal to the estimate for PM10. The TERT would expect that for this category, PM10 estimates are higher than (rather than equal to) PM2.5 estimates. In response to a question raised during the review Italy explained that there is an error in the calculation sheet for that year and that it will be corrected for the next submission. The TERT noted that the issue is related to a non-mandatory year. The TERT recommends that Italy correct the value for PM2.5 of this category for the next submission.	No	Implemented
IT-2D3g- 2019-0001	No	2D3g Chemical Products, PM _{2.5} , 2000-2017	The TERT noted, with reference to NFR tables, that the PM2.5 estimate is equal to the estimate for PM10. The TERT would expect that for this category, PM10 estimates are higher than (rather than equal to) PM2.5 estimates. In response to a question raised during the review, Italy explained that, because of national legislation, manufacturing plant have abatement system in place so that PM emissions could all be considered as PM2.5. The TERT agreed with the explanation and concluded that this does not relate to an over- or under-estimate of emissions. The TERT recommends that Italy include this explanation in the next submission of its IIR.	No	Implemented

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
IT-2G- 2017- 0001/ IT-2G- 2018- 0001	No	2G Other Product Use, SO2, NOX, NH3, NMVOC, PM2.5, 1990-2017	For category 2G Other Product Use and pollutants SO2, NOX, NH3, NMVOC, PM2.5 for all years, the TERT noted with reference to IIR and NFR tables that emissions from the use of fireworks and tobacco are not estimated. This was raised during the 2017 and 2018 NECD review. In response to a question raised during the review Italy indicated that the emission estimation of these activities was not prioritized for the 2019 submission. The TERT noted that the issue is below the threshold of significance for a technical correction based on an estimation with Eurostat statistics and Tier 2 EF from the 2016 EMEP/EEA guidebook. The TERT recommends that Italy includes the emission estimates from the use of fireworks and tobacco in its next submission.	No	Emissions have been estimated and included in the Inventory
IT-2I- 2019- 0001	No	2I Wood Processing, PM _{2.5} , PM ₁₀ , TSP, 1990-2017	The TERT noted that the notation key 'NA' (not applicable) is used whilst emission factors are available in the 2016 EMEP/EEA Guidebook (at least for TSP). In response to a question raised during the review Italy indicated that there are difficulties to gather activity data for the whole time series and that the 2016 EMEP/EEA guidebook does not provide speciation for PM emissions. Nevertheless, Italy stated that it will explore how to estimate emissions starting from the FAOSTAT database statistics. The TERT noted that the issue is below the threshold of significance for a technical correction. The TERT recommends that Italy include this category in its improvement plan in order to estimate at least TSP emissions for the next submission.	No	Emissions have been estimated and included in the Inventory

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
IT-3B- 2019- 0001	Yes	3B Manure Management, NOx, NH ₃ , 2000-2017	The TERT noted that with reference to NH3 emissions from biogas facilities, that the percentage of different substrates has been recalculated based on a recent study (CRPA, 2018) and as a result the amount of manure sent to anaerobic digestors has decreased considerably (page 159, IIR). In response to a question raised during the review Italy explained that the quantity of manure sent to anaerobic digesters decreases by an average of 59% in the period 2012-2016 (in previous years decreases by 77%) and the percentage of manure compared to other substrates changes from 65% to 46%. This reduction is due to several factors: the values of the volatile solids of manure and agro-industrial byproducts increase, therefore the quantity of feed, estimated starting from the biogas produced, decreases; the percentage composition of the diet feeding the digesters has changed and the proportion of the manure has decreased. The TERT agreed with the explanation provided by Italy. The TERT recommends that Italy includes detailed information with regard to the different substrates and volatile solid values for anaerobic digestion feedstocks in the IIR of its next submission, with particular focus on the quantities of and volatile solid contents of livestock manures.	No	Implemented
IT- 3B4giii- 2019- 0001	No	3B4giii Manure Management - Turkeys, NOx, NH3, 1990-2017	The TERT noted that there is a lack of transparency regarding the activity data used, emission factor employed and resultant emissions for turkeys as they are reported with other poultry in category 3B4giv and not in category 3B4giii. In response to a question raise during the review, Italy provided a detailed explanation with regard to the types of poultry reported in	No	Implemented

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			3B4giv, nitrogen excretion values and associated emission factors. Furthermore, Italy suggested that it would report emissions from turkeys in category 3B4giii in future submissions. The TERT agreed with the explanation provided by Italy. The TERT recommends that Italy report emissions of NOX and NH3 from turkeys in category 3B4giii and not in category 3B4giv in future submissions to improve transparency.		
IT-5A- 2019- 0001	No	5A Biological Treatment of Waste - Solid Waste Disposal on Land, TSP, PM10 and PM2.5, 1990- 2017	The TERT noted that 'NE' is reported although default EFs are proposed in the 2016 EMEP/EEA Guidebook. In response to a question raised during the review Italy provided elements to justify that emissions are below the threshold of significance. Italy also explained that such estimate would be an estimate in excess because one should not consider the entire amount of waste in the landfill but only the part with powdery characteristics. The TERT confirmed that the issue is expected to be below the threshold of significance for a technical correction. The TERT acknowledges that the 2016 EMEP/EEA Guidebook does not provide detailed information on AD to be considered for the estimate. However, it is the TERT's understanding that instead of using the amount of municipal waste disposed in landfills as AD to estimate PM emissions, it is more relevant to use the amount of mineral waste handled. When looking to the US EPA methodology you can notice that AD refers to Sand, Slag, cover, clay and fill material. Even using very high AD, emissions are expected to be below the threshold of significance. The TERT recommends that Italy includes TSP, PM10 and PM2.5 emissions from 5A in the next submission.	No	Emissions have been estimated and included in the Inventory

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
IT-2G- 2018- 0002	No	2G Other Product Use, Cd, Pb, 1990, 2005, 2016	The TERT noted with reference to the NFR tables that Italy has reported the notation key 'NA' for several pollutants including Cd and Pb, although the 2016 EMEP/EEA Guidebook provides emission factors (use of fireworks and tobacco). This was raised already during the 2018 NECD review. Italy stated that emissions will be included in the next submission and that it will improve the activity data time series for the next submission considering other surveys and statistics on tobacco consumption by the national health institute. The TERT recommends that Italy include emission estimates in its 2020 NFR and IIR submission.	RE	Emissions have been estimated and included in the Inventory
IT-1A1a- 2018- 0001	Yes	1A1a Public Electricity and Heat Production, PCBs, 2000-2017	For PCB emissions from 1A1a Public Electricity and Heat Production, which is a key category for this pollutant in Italy, Italy responded to a question raised during the 2018 review that PCB emissions are calculated with a Tier 1 method. In response to a question raised during the 2019 review, Italy explained that the PCBs EFs provided by the Guidebook for 1A1a are actually the same for Tier 1 and Tier 2. The TERT agreed with the answer provided by Italy. The TERT recommends that Italy improves transparency by providing more detailed information on the method used for calculating PCB emissions from 1A1a in the next IIR submission.	No	Tier 1 emission factor from the EMEP/EEA Guidebook 2019 have been used to recalculate PCB emissions
IT-1A2- 2018- 0002	Yes	1A2 Stationary Combustion in Manufacturing Industries and Construction, PCBs, HCB, Cd, Hg, Pb, PCDD/F, 2000-2017	For PCB, HCB, Cd, Hg, Pb and dioxin emissions in NFR category 1A2 Stationary Combustion in Manufacturing Industries and Construction, which is a key category for these pollutants, the TERT noted that it was not clear which Tier level and which version of the	No	Additional information has been added in the IIR but EFs from the 2006 EMEP/EEA Guidebook have not been updated

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			Guidebook have been used to calculate the emissions. In response to a question raised during the 2018 review, Italy informed to use, depending on the pollutant, country specific EFs, EFs from the 2006 EMEP/EEA Guidebook as well as information from the BREF document. The TERT notes that according to the reporting guidelines, countries should use the latest version of the Guidebook. The TERT noted that additional information has been added in the 2019 IIR but EFs from the 2006 EMEP/EEA Guidebook have not been updated. In response to a question during the 2019 review, Italy indicated that this issue will be resolved in the next submission. The TERT recommends that Italy moves to higher Tier methods where needed and uses the 2016 EMEP/EEA Guidebook instead of the 2006 version and documents the emission factors used in the IIR. The TERT also kindly notes that the progress in the implementation of the improvement will be reviewed in 2020.		
IT-2D3a- 2018- 0001	No	2D3a Domestic Solvent Use Including Fungicides, Hg, 1990, 2005, 2016	This review is undertaken against the 2016 EMEP/EEA Guidebook which includes an EF for Hg for fluorescent tubes in category 2D3a Domestic Solvent Use Including Fungicides. However, the TERT is aware that this EF will not be included in the 2019 version of the Guidebook, and therefore it is not currently sensible to add this source. The TERT recommends that Italy review their inventory against the 2019 version of the Guidebook, and update it if necessary, before their next submission.	No	The issue is under investigation although non emission factors are available in the 2019 EMEP/EEA Guidebook
IT- 2D3g- 2018- 0001	Yes	2D3g Chemical Products, PAHs, 1990-2017	The TERT noted with reference to NFR tables that Benzo(a)pyrene and PAH emissions are reported as 'NA'. The IIR states that	No	The notation key NE has been used. The issue is under investigation

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			these emissions are considered negligible but can occur. In response to a question raised during the review Italy indicate that it will try to implement to estimate emissions in the next submission on the basis of the ELV value or change the notation key to 'NE' if not possible. The TERT noted that the issue is below the threshold of significance for a technical correction. The TERT recommends that Italy include an emission estimate or change the notation key in the NFR tables for its next submission.		with the relevant operators
IT-1A1c- 2019- 0001	Yes	1A1c Manufacture of solid fuels and other energy industries, PAHs, 2005	The TERT noted that for category 1A1c Manufacture of solid fuels and other energy industries for the pollutants and years: PAHs (2005) the IEF ratios of the pollutant are outliers when compared to other Member States. The TERT noted that reported emissions are higher (>250 times higher) than when a reference value is calculated using Tier 1 EFs from the 2016 EMEP/EEA Guidebook. In response to a question raised during the review, Italy explained that it uses an emission factor from the 2006 EMEP/CORINAIR Guidebook, which includes fugitive emissions. The TERT noted that countries should use the latest version of the Guidebook or explain why the older method is more accurate for the specific situation. The TERT also noted that the fugitive emissions from solid fuel transformation (including coke production plants) are typically included under category 1B1b and that the 2016 EMEP/EEA Guidebook has PAH emission factors including speciation for 1B1b. The TERT decided to calculate a technical correction for category 1A1c and for the key years which	TC	Emissions from 1A1c have been revised according to the review and those from 1B1b have been estimated and included in the inventory. These emissions are still reported under 2C but they will be report in 1B1b in the next submissions

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			was accepted by Italy. The estimates demonstrate that the issue is above the threshold of significance. The TERT recommends that Italy include a revised estimate in its next submission and allocates the fugitive emissions from coke production in category 1B1b.		
IT- 1A4bi- 2019- 0001	No	1A4bi Residential: Stationary, BaP, 1990, 2016, 2017	The TERT noted that the notation key 'NE' (not estimated) is used for category 1A4bi Residential: Stationary for BaP whilst a Tier 1 method is available in the 2016 EMEP/EEA Guidebook. Since 1A4bi is a key category for BaP for almost all Member States, there is a potential underestimate of BaP emissions that is above the threshold of significance. In response to a question raised during the review, Italy provided a revised estimate of BaP emissions from 1A4bi for years 1990, 2005, 2016 and 2017. The TERT agreed with the revised estimate provided by Italy. The TERT recommends that Italy includes BaP emissions from 1A4bi in their next submission.	RE	Emissions have been estimated and included in the Inventory
IT-5E- 2019- 0001	No	5E Other waste (please specify in IIR), PCDD/F, 2005, 2016, 2017	For category 5E Other waste and pollutant PCDD/F the TERT identified a potential under-estimate exceeding the threshold of significance. The TERT noted that in response to a question raised during the review Italy explained that it has made a first estimate for PCDD/F emissions from accidental fires resulting in 1.3gI-Teq in 2005 and 1.2gI-Teq in 2017 considering that EFs reported in the 2016 EMEP/EEA Guidebook for detached house, non-detached house, apartment and industrial building are in µg/fire and not in mg/fires as reported in the 2016 EMEP/EEA Guidebook (see the original source: Aasestad K., 2007). Considering also that, as reported by Aasestad, the	TC	Emissions have been estimated and included in the Inventory

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			emission factors used for particles in the inventory are given by scaling the emission factors used for combustion of fuelwood in the households, so referring prevalently to wooden houses, Italy considers that the 2016 EMEP/EEA Guidebook EFs are not adaptable to the national framework. Italy did not provide a revised estimate and as such the TERT decided to calculate a technical correction for PCDD/F for the years 1990, 2005, 2010 which was accepted by Italy. The estimates demonstrate that the issue is above the threshold of significance. The TERT recommends that Italy include the revised estimates in its next		
IT-0A- 2019- 0002	No	0A National Total - National Total for the Entire Territory - Based on Fuel Sold/Fuel Used, BaP, 1990-2017	submission. For benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and Indeno(1,2,3-cd)pyrene the TERT noted that in the NFR tables (1990 to 2017) Italy does not report National Total emissions in rows 141 and 144. The NEC Directive clearly states (Annex 1, Table A) that Member State have to report emissions including the National Total for the individual PAHs as well as for total PAHs. The TERT recommends that Italy reports the National Total emissions in the NFR tables rows 141 and 144 for benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and Indeno(1,2,3cd)pyrene for all years in its next submission.	No	Implemented
IT-1A1- 2019- 0001	No	1A1 Energy Production, BaP, PAHs, PCBs, HCB, Cd, Hg, Pb, PCDD/F, 1990 - 2017	For category 1A1 Energy Production, emissions of heavy metals and POPs, the TERT noted that there is a lack of transparency in the 2019 IIR on the methods and emission factors used to calculate emissions of several HMs and POPs. In response to a question raised during the review, Italy	No	Additional information has been included in the IIR

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			explained which methods and emission factors are used and indicated that more information will be included in the IIR in the next submission. The TERT recommends that Italy include a clear overview in the IIR of methods and emission factors used for category 1A1 in the next submission to improve transparency.		
IT-1A1a- 2019- 0001	Yes	1A1a Public Electricity and Heat Production, PCBs, 2005, 2016, 2017	For category 1A1a Public Electricity and Heat Production for the pollutant PCBs and years 2005, 2016 and 2017, the TERT noted that the IEF ratios of the pollutant when compared to other Member States are outliers. The TERT noted that reported emissions are higher (>100 times higher) than when a reference value is calculated using Tier 1 EFs from the 2016 EMEP/EEA Guidebook (not including 'Other Fuels'). In response to a question raised during the review, Italy listed several difficulties in calculating these emissions using the 2016 EMEP/EEA Guidebook, including a potential inconsistency in the 2016 EMEP/EEA Guidebook. The TERT agreed that there may be an issue with the PCB emission factors for 1A1a in the 2016 EMEP/EEA Guidebook and that this issue needs to be cleared up before Italy can be asked for a Revised Estimate. The TERT recommends that Italy continue to investigate with the relevant operators if country specific emission factors are available and usable for the emission inventory purposes.	No	Tier 1 emission factor from the EMEP/EEA Guidebook 2019 have been used to recalculate PCB emissions
IT-1A2- 2019- 0001	Yes	1A2 Stationary Combustion in Manufacturing Industries and Construction, BaP, PAHs, PCBs, HCB, Cd, Hg, Pb, PCDD/F, 1990-2017	For category 1A2 Stationary Combustion in Manufacturing Industries and Construction, emissions of heavy metals and POPs, the TERT noted that there is a lack of transparency in the 2019 IIR on the methods and emission factors used to	No	Additional information has been added in the IIR.

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			calculate emissions. In response to question raised during the review, Italy explained which methods and emission factors are used and indicated that more information will be included in the IIR in the next submission. The TERT recommends that Italy include a clear overview in the IIR of methods and emission factors used for category 1A2 in the next submission to improve transparency.		
IT-1A2a- 2019- 0001	Yes	1A2a Stationary Combustion in Manufacturing Industries and Construction: Iron and Steel, PCBs, Cd, HCB, 1990-2017	For Cd, HCB and PCBs emissions from category 1A2a Stationary Combustion in Manufacturing Industries and Construction: Iron and Steel, the TERT noted that reported emissions are higher (>5 times higher) than when a reference value is calculated using Tier 1 EFs from the 2016 EMEP/EEA Guidebook (not including 'Other Fuels'), potentially constituting an over-estimate of emissions that is above the threshold of significance. In response to a question raised during the review, Italy explained that emissions are calculated using relevant production data and that emission factors are from the 2006 EMEP/CORINAIR Guidebook and based on reported emissions from the main Italian plant in the 1990's. Italy also plans to update these emission factors with more recent plant level emissions data where available. The TERT agreed with the explanation provided by Italy. The TERT recommends that Italy checks if the country specific emissions for 1A2a are still accurate for the current situation and whether new measurements are needed to determine updated country-specific emission factors. The TERT recommends that Italy includes information on the	No	The issue is under investigation with the relevant operators

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			planned improvements in the next IIR submission.		
IT- 1A2b- 2019- 0001	No	1A2b Stationary Combustion in Manufacturing Industries and Construction: Non-Ferrous Metals, HCB, 1990-2017	The TERT noted that the notation key 'NA' (not applicable) is used for category 1A2b Stationary Combustion in Manufacturing Industries and Construction: Non-Ferrous Metals for HCB whilst a Tier 1 method is available in the 2016 EMEP/EEA Guidebook. In response to a question raised during the review, Italy explained that emission factors are only available for biomass and solid fuels and that these are not used in category 1A2b in Italy. The TERT recommends that Italy changes the notation key to 'NE' (not estimated) and include information in the IIR on why HCB emissions are not estimated for this category.	No	The change has not Implemented because the relevant emission factors have been used for the fuels where available. In the Guidebook HCB EFs are available only for biomass and solid fuels and these are not used in category 1A2b in Italy. So the notation key used (NA) is the correct one.
IT- 1A2b- 2019- 0002	Yes	1A2b Stationary Combustion in Manufacturing Industries and Construction: Non-Ferrous Metals, PCDD/F, 1990-2017	For PCDD/F emissions from category 1A2b Stationary Combustion in Manufacturing Industries and Construction: Non-Ferrous Metals the TERT noted that reported emissions are higher (>500 times higher) than when a reference value is calculated using Tier 1 EFs from the 2016 EMEP/EEA Guidebook (not including 'Other Fuels'), potentially constituting an over-estimate of PCDD/F emissions that is above the threshold of significance. In response to a question raised during the review, Italy explained that the emissions are mainly from secondary aluminium production where country specific emission factors are used based on measurements at plant level in the 1990's. The TERT partly agreed with the explanation provided by Italy. The TERT recommends that Italy checks if the country specific emission factor used for calculating PCDD/F emissions for 1A2b is still accurate for the current	No	The issue is under investigation with the relevant operators

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			situation and whether new measurements are needed to determine an updated country-specific emission factor. The TERT recommends that Italy reflects on this recommendation in the next IIR submission.		
IT- 1A2gvii- 2019- 0001	No	1A2gvii Mobile Combustion in Manufacturing Industries and Construction, BaP, PAHs, 1990-2017	For categories 1A2gvii Mobile Combustion in Manufacturing Industries and Construction, 1A4bii Residential: Household and Gardening (Mobile) and 1A4cii Agriculture/Forestry/Fishing: Off Road Vehicles & Other Machinery, BaP and PAHs, all years, the TERT noted that emissions of individual PAHs are reported as 'NE' in the NFR tables. In response to a question raised during the review, Italy explained that only the total value of PAHs are currently reported, their disaggregation by compound is planned for next submissions giving priority to key categories. For accuracy and transparency purposes, the TERT recommends that Italy to report individual of PAHs for 1A2gvii, 1A4bii and 1A4cii in the 2020 submission.	No	Implemented
IT- 1A3bvi- 2019- 0001	No	1A3bvi Road Transport: Automobile Tyre and Brake Wear, PM2.5, BaP, PAHs, Cd, Hg, Pb, 1990-2017	The TERT noted that there is a lack of transparency regarding the Guidebook's Tier method used. The TERT also noted that emissions of BaP and PAHs (Benzo(b)fluoranthene and Benzo(k)fluoranthene) are reported as 'NE' in the NFR tables. The 2016 EMEP/EEA Guidebook (1A3bvi chapter, Table 3-10) provides emission factors for estimating BaP and PAHs (Benzo(b)fluoranthene and Benzo(k)fluoranthene and Benzo(k)fluoranthene) emissions from 1A3bvi. In response to a question raised during the review, Italy clarified that non-exhaust emissions from road transport are derived directly from the application of the COPERT v.5.2.2 model. The TERT noted that the issue is below	No	Emissions have been estimated and included in the Inventory

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			the threshold of significance for a technical correction. The TERT recommends that Italy includes emissions of BaP and PAHs (Benzo(b)fluoranthene and Benzo(k)fluoranthene) for 1A3bvi in the 2020 submission.		
IT-1A3c- 2019- 0002	No	1A3c Railways, BaP, PAHs, 1990-2017	The TERT noted that emissions of individual PAHs are reported as 'NE' in the NFR tables. In response to a question raised during the review, Italy explained that only the total value of PAHs are currently reported. They stated that this source category in Italy is not a key category and it is irrelevant because diesel trains represent a minimum share of the total (the remaining shares are almost completely represented by electric traction). They also stated that they are planning to report PAH emissions for the different components in the future years giving priority to the key categories. For accuracy and transparency purposes, the TERT recommends that Italy to report individual PAHs for 1A3c in the 2020 submission.	No	Emissions have been estimated and included in the Inventory
IT- 1A3dii- 2019- 0001	No	1A3dii National Navigation (Shipping), PCBs, HCB, PCDD/F, 1990-2017	The TERT noted that emissions of these pollutants are reported as 'NA' in the NFR tables. Tier 1 emission factors are available for these pollutants in the 2016 EMEP/EEA Guidebook (1A3d Navigation chapter). In response to a question raised during the review, Italy stated that they will include emission estimates for these pollutants and relevant categories in the next submission. The TERT noted that the issue is below the threshold of significance for a technical correction. The TERT recommends that Italy reports emission estimates of PCBs, HCB, PCDD/F for 1A3dii in the 2020 submission.	No	Emissions have been estimated and included in the Inventory
IT- 1A4ciii-	No	1A4ciii Agriculture/Forestry/Fishing:	The TERT noted that emissions of these pollutants		Emissions have been estimated

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
2019-0001		National Fishing, PCBs, HCB, PCDD/F, 1990-2017	are reported as 'NA' in the NFR tables. In response to a question raised during the review, Italy stated that for the 2020 submission they will explore how to use the emission factors in the Guidebook taking into account that the Guidebook refers to the bunker fuel while Italy's prevalent fuel consumption is diesel for 1A4ciii. The TERT would like to point out that the 2016 EMEP/EEA Guidebook (1A3d chapter, Table 3-2) provides default emission factors for vessels using marine diesel oil/marine gas oil. The TERT noted that the issue is below the threshold of significance for a technical correction. The TERT recommends that Italy includes emission estimates of PCBs, HCB and PCDD/F for 1A4ciii in the 2020 submission.		and included in the Inventory
IT-2C1- 2019- 0001	No	2C1 Iron and Steel Production, HCB, 1990- 2017	The TERT noted with reference to the 2019 NFR tables that the notation key 'NA' (not applicable) is used whilst there is a Tier 1 EF proposed in the 2016 EMEP/EEA Guidebook (chapter 2.C.1 - table 3.1). The TERT also notes with reference to the 2019 IIR (page 122) that HCB emissions from sintering are reported in NFR 1A2a. In response to a question raised during the review Italy agreed that a change of the notation key for HCB in NFR 2C1 is necessary and stated that it will do it for the next submission. The TERT recommends that Italy include the relevant notation key in the next submission.	No	Implemented
IT-2C6- 2019- 0001	No	2C6 Zinc Production, Hg, Cd, 1990-2017	The TERT noted with reference to the 2019 NFR tables that the notation key 'NA' (not applicable) is used whilst there is a Tier 1 EF proposed in the 2016 EMEP/EEA Guidebook (chapter 2.C.6 - table 3.1).	No	Implemented

Observation	Key	NFR, Pollutant(s), Year(s)	Recommendation	RE	Implementation
	Category			or	
				TC	
			The TERT also noted with reference to the 2019 IIR (page 122) that energy and process emissions for these activities are difficult to split for Italy and are then reported in NFR 1A2. In response to a question raised during the review Italy agreed that a change of the notation key for Hg and Cd in NFR 2C6 is necessary and stated that it will do it for the next submission.		
IT-2C7a- 2019- 0001	No	2C7a Copper Production, Hg, 1990-1998	For category 2C7a Copper Production for pollutant Hg, all years, the TERT noted with reference to the NFR tables that the notation key 'NA' (not applicable) is used for whilst there are Tier 1 EFs proposed in the 2016 EMEP/EEA Guidebook (chapter 2.C.7.a - table 3.1). In response to a question raised during the review, Italy explained that the 2016 EMEP/EEA Guidebook Hg emission factor is not applicable because it refers to primary copper production while in Italy copper production between 1990 and 1998 was derived only from secondary technologies. The TERT agreed with the explanation and concluded that this does not relate to an over- or under-estimate of emissions. The TERT recommends that Italy include this explanation about the notation key used in its next IIR submission.	No	In the IIR additional information has been added

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
IT-3Df- 2019- 0001	Yes	3Df Use of Pesticides, HCB, 2016	For category 3Df Use of Pesticides, pollutant HCB for the year 2016 the TERT noted that significant recalculations have been applied (>10% change) and that no explanation could be found in the IIR. In response to a question raised during the review Italy explained that revised activity data had been used to derive the emission value for 2016. The TERT agreed with the explanation provided by Italy. The TERT recommends that Italy include the rationale for all recalculations in the agriculture sector in the IIR of future submissions.	No	HCB emissions have been updated based on EFs of the EMEP/EEA Guidebook 2019 and the rationale has been reported in the NIR
IT-5C- 2019- 0001	Yes	5C Waste incineration, PCBs, HCB, 1990-2017	For HCB and PCBs emissions from 5C Waste Incineration there may be an over-estimate of emissions. This over-estimate may have an impact on total emissions that is above the threshold of significance. The TERT notes that this over-estimate may be because HCB and PCBs EFs are from the 2007 EMEP/CORINAIR Guidebook for the complete time series although updated values are proposed in the 2016 EMEP/EEA Guidebook. On the other hand, HCB and PCBs are not estimated for 5C1bv Cremation whilst default EF are proposed in the 2016 EMEP/EEA Guidebook. The TERT also notes that 5C1biv Sewage Sludge Incineration is a key category for HCB and therefore that a higher Tier level should be applied. In response to a question raised during the review Italy indicated that HCB emission factors are very different only for HCB from sludge and that it plans to revise emission factors although it is not clear if they should be applied to the whole time series or only for the latest years. The TERT confirms that, at least for key	No	Implemented

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			categories (e.g. sludge incineration), the estimate should be improved by taking into account the application of abatement technologies over the time series. Therefore, the TERT recommends that Italy apply a higher Tier methodology in its next submission (considering an evolution of the EF over the time series). Moreover, the TERT recommends that Italy applies the updated version of the EMEP/EEA Guidebook (2016 or the 2019 version) and includes HCB and PCBs for 5C1bv Cremation in its next submission.		
IT- 5C1bv- 2019- 0001	Yes	5C1bv Cremation, SO2, NOX, NMVOC, PM2.5, BaP, PAHs, PCBs, HCB, Cd, Hg, Pb, PCDD/F, 1990- 2017	For SO2, NOX, NMVOC, PM2.5, BaP, PAHs, PCBs, HCB, Cd, Hg, Pb, PCDD/F from 5C1bv Cremation TERT noted that EF used by Italy are from the 2009 EMEP/EEA Guidebook although EFs have been updated in the 2016 EMEP/EEA Guidebook. In response to a question raised during the review confirmed and provided a calculation file for the complete time series and stated that it will be included in the next submission. The TERT noted that, in this calculation file, the impact is below the threshold of significance for pollutants under the scope of the 2019 review for the complete time series and agreed with the calculation for a very first estimate. But the TERT also noted that country specific EFs (0.0059 g/corpse) are applied. These EFs are based on the results of a measurement campaign made on crematoriums in 2015. The EFs are applied as a constant across the time series which is quite unlikely because of the implementation of abatement technologies.	No	Country specific emission factors form the results of a measurement campaign made on crematoriums in 2015 have been used to estimate the whole time series. It is expected to have an update of this survey referred to 2019. Additional information on the past technologies have been requested to the relevant operators and if any they will be included in the next submission

Observation	Key Category	NFR, Pollutant(s), Year(s)	Recommendation	RE or TC	Implementation
			Therefore, the TERT recommends that Italy include higher Tier methodology taking into account the implementation of abatement technologies.		

A bilateral independent review between Italy and Spain was undertaken in the year 2012, with a focus on the revision of emission inventories and projections of both the Parties. With regard to the emission inventory the Italian team revised part of the energy sector of Spain, specifically the public power plants, petroleum refining plants, road transport and off-road categories, whereas the Spanish team revised the Industrial processes and solvent and other product use, and the LULUCF sectors of Italy. Results of these analyses are reported in a technical report. Aim of the review was to carry out a general quality assurance analysis of the inventories in terms of methodologies, EFs and references used, as well as analysing critical cross cutting issues such as the details of the national energy balances and comparison with international data (EUROSTAT and IEA) and use of plant specific information.

In addition, an official independent review of the entire Italian inventory was undertaken by the Aether consultants in 2013. Main findings and recommendations are reported in a final document, and regard mostly the transparency in the NIR, the improvement of QA/QC documentation and some pending issues in the LULUCF sector. These suggestions were considered in the implementation of the following inventories.

Comparisons between national activity data and data from international databases are usually carried out in order to find out the main differences and an explanation to them. Emission intensity indicators among countries (e.g. emissions per capita, industrial emissions per unit of added value, road transport emissions per passenger car, emissions from power generation per kWh of electricity produced, emissions from dairy cows per tonne of milk produced) can also be useful to provide a preliminary check and verification of the order of magnitude of the emissions. Additional comparisons between emission estimates from industrial sectors and those published by the industry itself in the Environmental reports are carried out annually in order to assess the quality and the uncertainty of the estimates.

The quality of the inventory has also improved by the organization and participation in sector specific workshops.

A specific procedure undertaken for improving the inventory regards the establishment of national expert panels (in particular, in road transport, land use change and forestry and energy sectors) which involve, on a voluntary basis, different institutions, local agencies and industrial associations cooperating for improving activity data and emission factors accuracy.

Furthermore, activities in the framework of the improvement of local inventories are carried out together with local authorities concentrating on the comparison between top down and bottom up approaches and identifying the main critical issues. In 2018, ISPRA has finalised the provincial inventory at local scale for the years 1990, 1995, 2000, 2005, 2010 and 2015 applying a top down approach. Methodologies and results were checked out by regional and local environmental agencies and authorities, and figures are available at ISPRA web address http://www.sinanet.isprambiente.it/it/sia-ispra/inventaria. Methodologies used for a previous reporting cycle are described in a related publication (ISPRA, 2009).

This work is also relevant to carry out regional scenarios, for the main pollutants, within the Gains Italy project implemented by ENEA and supported by ISPRA and the regional authorities.

In addition to these expert panels, ISPRA participates in technical working groups within the National Statistical System. These groups, named *Circoli di qualità* ("Quality Panels"), coordinated by the National Institute of Statistics, are constituted by both producers and users of statistical information with the aim of improving and monitoring statistical information in specific sectors such as transport, industry, agriculture, forest and fishing. These activities should improve the quality and details of basic data, as well as enable a more organized and timely communication.

Other specific activities relating to improvements of the inventory and QA/QC practices regard the progress on management of information collected in the framework of different European obligations, Large Combustion Plant, E-PRTR and Emissions Trading, which is gathered together in an informative system thus highlighting the main discrepancies among data, detecting potential errors and improving the time series consistency. ISPRA collects these data from the industrial facilities and the inventory team manages the information and makes use of it in the preparation of the national inventory. The informative system is based on identification codes to trace back individual point sources in different databases and all the figures are considered in an overall approach and used in the compilation of the inventory.

A proper archiving and reporting of the documentation related to the inventory compilation process is also part of the national QA/QC programme.

All the material and documents used for the inventory preparation are stored at the Institute for Environmental Protection and Research.

Information relating to the planning, preparation, and management of inventory activities are documented and archived. The archive is organised so that any skilled analyst could obtain relevant data sources and spreadsheets, reproduce the inventory and review all decisions about assumptions and methodologies undertaken. A master documentation catalogue is generated for each inventory year and it is possible to track changes in data and methodologies over time. Specifically, the documentation includes:

- electronic copies of each of the draft and final inventory report, electronic copies of the draft and final NFR tables;
- electronic copies of all the final, linked source category spreadsheets for the inventory estimates (including all spreadsheets that feed the emission spreadsheets);
- results of the reviews and, in general, all documentation related to the corresponding inventory year submission.

After each reporting cycle, all database files, spreadsheets and electronic documents are archived as 'read-only' mode.

A 'reference' database is also compiled every year to increase the transparency of the inventory. This database consists of a number of records that references all documentation used during the inventory compilation, for each sector and submission year, the link to the electronically available documents and the place where they are stored as well as internal documentation on QA/QC procedures.

1.8 GENERAL UNCERTAINTY EVALUATION

An overall uncertainty analysis for the Italian inventory related to the pollutants described in this report has not been assessed yet. Nevertheless, different studies on uncertainty have been carried out (Romano et al., 2004) and a quantitative assessment of the Italian GHG inventory is performed by the Tier 1 method defined in the 2006 IPCC Guidelines (IPCC, 2006) which provides a calculation based on the error propagation equations. Details on the results of the GHG inventory uncertainty figures can be found in the *National Inventory Report* 2019 (ISPRA, 2020 [a]).

It should be noted that different levels of uncertainty pertain to different pollutants. Estimates of the main pollutants are generally of high level, but PM emissions, especially those of small particle sizes, heavy metal and POP estimates are more uncertain. For this reason, even though not quantified in terms of uncertainty, improvements are planned especially for the specified pollutants.

Nevertheless, since quantitative uncertainty assessments constitute a mean to either provide the inventory users with a quantitative assessment of the inventory quality or to direct the inventory preparation team to priority areas, a planned improvement for next submissions is the completion of such analysis.

1.9 GENERAL ASSESSMENT OF COMPLETENESS

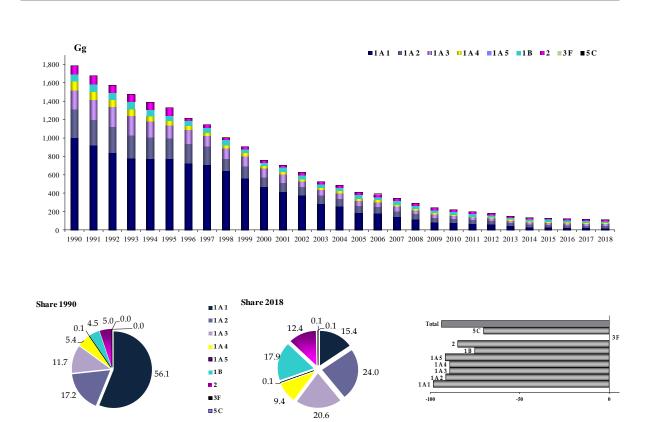
The inventory covers all major sources, as well as all main pollutants, included in the UNECE reporting guidelines (UNECE, 2014). NFR sheets are complete as far as the details of basic information are available.

Allocation of emissions is not consistent with the guidelines only where there are no sufficient data available to split the information. For instance, emissions from category 1.A.5.a other stationary are reported and included under category 1.A.4.a i commercial and institutional emission estimates. Mobile commercial and institutional emission estimates (1.A.4.a ii) are included in 1.A.3 sector. Emissions from 3.B.4.g iii turkeys are included in 3.B.4.g iv other poultry. PM and HMs emissions from 2.A.3 glass production are included in the relevant 1.A.2 combustion category source as well as those from lead, zinc and copper production. NO_X , SO_X and NH_3 from 1.B.1.b, fugitive emissions from solid fuel transformation, are included in the 1.A.2.a category.

There are a few emission sources not assessed yet: black carbon, HMs, PAH, dioxin and PCB non exhaust emissions from 1.A.3.b vii, road abrasion, PAH, dioxin and PCB emissions from 1.A.3.b v gasoline evaporation, black carbon, dioxin and PCB emissions from 1.A.3.b vi, automobile tyre and brake wear, NH₃ emissions from 1.A.3a domestic and international aviation LTO cycle, NH₃ from 1.A.3.e i, pipeline transportation, NO_X and NH₃ from 3.D.a iv, crop residues applied to soils, and 3.D.b, indirect emissions from managed soils. Emission factors for these categories, when available in the Guidebook (EMEP/EEA, 2019), need further assessment for the applicability to the national circumstances. PAH emissions are not detailed in the four indicator compounds for all the categories; we should still estimate them for categories 1.A.1, 1.A.2, 2 C and 2 D, because for some categories emission factors are not fully available by compound. PM and black carbon emissions from the categories reported in the NFR under 2.A.5, quarrying and mining of minerals other than coal, construction and demolition and storage, handling and transport of mineral products, are not estimated because no information on activity data is still available. Emissions of Hg from fluorescent tubes, to be reported in 2.D.3a, are under investigation although no emission factors are available on the 2019 Guidebook In the 2016 Guidebook emission factors are available but it seems that the Hg emission factor (Tier 1 and Tier 2) refer to the end of life cycle of fluorescent tubes more than to their productions. Anyway, we are still verifying the applicability of this EF to Italy according to the limited use of fluorescent tubes, especially in the last years. Emissions of PAH from asphalt blowing, 2.D.3g, are also under further investigation and reported as NE, although according to the relevant industrial association PAH emissions are negligible because all the asphalt blowing plants have abatement filter system of PM and afterburners of gas. Moreover, these plants should respect national environmental legislation not exceeding at the stack more than 0.1mg/Nm3 for total PAH.

Further investigation will be carried out about these source categories and pollutants in order to calculate and improve figures.

2 ANALYSIS OF KEY TRENDS BY POLLUTANT


2.1 MAIN POLLUTANTS

In the following sections, Italian emission series of sulphur oxides, nitrogen oxides, non-methane volatile organic compounds, carbon monoxide and ammonia are presented.

2.1.1 Sulphur dioxide (SO_X)

The national atmospheric emissions of sulphur oxides have significantly decreased in recent years, as occurred in almost all countries of the UNECE.

Figure 2.1 and Table 2.1 show the emission trend from 1990 to 2018. Figure 2.1 also illustrates the share of SO_X emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

Figure 2.1 SO_X emissions trend, percentage share by sector and variation 1990-2018

Table 2.1 SO_X emission trend from 1990 to 2018 (Gg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Gg					
Combustion in energy and transformation industries	1,001	776	467	187	77	30	22	19	17
Non industrial combustion plants	82	33	25	23	12	10	10	10	10
Combustion - Industry	303	220	107	75	46	27	28	26	26
Production processes	157	126	51	61	46	31	29	33	29
Solvent and other product use	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Road transport	129	72	12	2	0	0	0	0	0
Other mobile sources and machinery	98	84	84	51	29	22	22	22	22
Waste treatment and disposal	13	12	10	11	7	4	4	5	4
Agriculture	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total	1,784	1,322	756	409	218	124	117	115	110

Figures show a general decline of SO_X emissions during the period, from 1,784 Gg in 1990 to 110 Gg in 2018. The national target of SO_X emissions, set by the National Emission Ceilings Directive at 475 Gg for 2010 (EC, 2001) was reached and continues to be respected after this year revision of the time series. The new targets established for 2020 in the framework of the UNECE/CLRTAP Convention and for 2030 in the framework of the revised National Emission Ceiling Directive (EU, 2016), equal for Italy respectively to 65% and 29% of 2005 emissions, has been already reached.

The decreasing trend is determined mainly by the reduction in emissions from *combustion in energy* (-98%) and in *industry* (-91%), representing in 2018 about 15%, and 24% of the total, respectively. Emissions deriving from *non industrial combustion plants* and *road transport* show a strong decrease too (-87% and -99.7%, respectively), but these emissions represent only about 9% and 0.4% of the total in 2018. *Production processes* and *other mobile sources and machinery* also present a significant decreasing trend, showing an influence on the total of 27% and 20% and dropping by about -81% and -77%, respectively. SO_X emissions from agriculture and from solvent and other product use have been introduced but their contribute is irrelevant.

An explanation of the sectoral decreasing trend is outlined more in details in the following.

Combustion in energy and transformation industries

The trend of emissions of this sector shows a reduction in the early eighties mainly due to the use of natural gas in place of coal in the energy production and to the implementation of the Directive EEC 75/716 (EC, 1975) which introduces more restrictive constraints in the sulphur content of liquid fuels.

During the years 1985-1990, there was an increase of energy consumption that, not sufficiently hampered by additional measures, led to an increase in the emissions of the sector and consequently of total SO_X levels.

However in the nineties, there was an inverse trend due to the introduction of two regulatory instruments: the DPR 203/88 (Decree of President of the Republic of 24th May 1988), laying down rules concerning the authorisation of plants, and the Ministerial Decree of 12th July 1990, which introduced plant emission limits. Also the European Directive 88/609/EEC (EC, 1988) concerning the limitation of specific pollutants originated from large combustion plants, transposed in Italy by the DM 8th May 1989 (Ministerial Decree of 8th May 1989) gave a contribution to the reduction of emissions in the sector.

Finally, in recent years, a further shift to natural gas in place of fuel oil has contributed to a decrease in emissions.

Non industrial combustion plants

The declining of the emissions occurred mainly as a result of the increase in natural gas and LPG as alternative fuel to coal, diesel and fuel oil for heating; furthermore, several European Directives on the sulphur content in fuels were adopted. In accordance with national legislation, the sulphur content allowed in diesel fuel has decreased from 0.8% in 1980 to 0.2% in 1995 and 0.1% in 2008, while in fuel oil for heating from 3% in 1980 to 0.3% in 1998. Moreover, coal is not more allowed for residential and commercial heating.

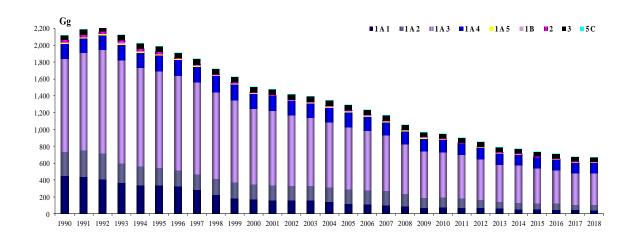
Combustion in industry

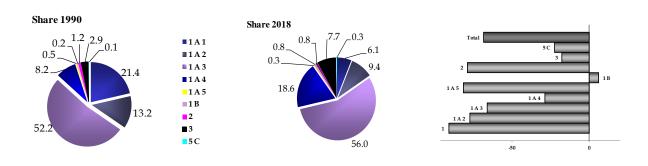
Emissions from this sector show the same trend of reduction as the category previously analysed, as both in the scope of the same rules.

Production processes

Emissions from refineries have been reduced as a result of compliance with the DM 12th July 1990 (Ministerial Decree of 12th July 1990), which introduces limit values. The reduction of emissions from chemical industry is due to the drop off of the sulphuric acid production and to the decrease of emissions in the production of carbon black. Furthermore, there was a reduction in emissions in the production of cement regarding the type of fuel used in the process and the respective sulphur content.

Road transport


The reduction of emissions is mainly due to the introduction of European Directives regulating the sulphur content in liquid fuels.


Other mobile sources and machinery

As regards off roads, emissions mainly derive from maritime transport, which show a decrease due to the introduction of European Directives regulating the sulphur content in fuels.

2.1.2 Nitrogen oxides (NO_X)

The national atmospheric emissions of nitrogen oxides show a decreasing trend in the period 1990-2018, from 2,123 Gg to 669 Gg. Figure 2.2 and Table 2.2 show emission figures from 1990 to 2018. Figure 2.2 also illustrates the share of NO_X emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

Figure 2.2 NO_X emission trend, percentage share by sector and variation 1990-2018

Table 2.2 NO_X emission trend from 1990 to 2018 (Gg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Gg					
Combustion in energy and transformation industries	457	344	173	118	81	52	48	46	42
Non industrial combustion plants	64	65	69	78	87	87	87	88	87
Combustion - Industry	249	180	152	153	100	65	65	57	58
Production processes	30	31	9	16	11	10	8	11	10
Solvent and other product use	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1
Road transport	997	1040	776	630	430	334	320	290	291
Other mobile sources and machinery	261	258	260	233	183	130	127	125	128
Waste treatment and disposal	3	3	3	3	3	2	2	2	2
Agriculture	62	64	64	61	50	52	54	53	51
Total	2123	1987	1505	1291	945	732	712	672	669

Total emissions show a reduction of about 68% from 1990 to 2018, with a marked decrease between 1995 and 2000, especially in the road transport and energy combustion sectors. The target value of emissions, fixed for 2010 by the National Emission Ceilings Directive (EC, 2001) at 990 Gg has been reached and continues to be respected. In 2015, in the framework of the UNECE/CLRTAP Convention, and in particular the Multieffects Protocol, a new target has been established for Italy equal to 60% of 2005 emissions in 2020 and it has been already reached. Moreover, the revised National Emission Ceiling Directive (EU, 2016), established a target for Italy equal to 35% of 2005 emissions in 2030.

The main source of emissions is *road transport* (about 43% in 2018), which shows a reduction of 71% between 1990 and 2018; *other mobile sources and machinery* in 2018 contributes to the total emissions for 19% and have reduced by 51% from 1990. Combustion in energy and in industry shows a decrease of about 91% and 77%, respectively, having a share on the total of about 6% and 9% in 2018, respectively. Among the sectors concerned, the only one which highlights an increase in emissions is *non industrial combustion plants* showing an increase by 36%, accounting for 13% of the total.

Details on the sectoral emission trend and respective variation are outlined in the following sections, starting from the early eighties.

Combustion in energy and transformation industries

Emissions from this sector show an upward trend until 1988 due to an increase in energy consumption, not prevented by reduction measures. From 1988 onwards, emissions present a gradual reduction due, mainly, to the introduction of the two regulatory instruments already mentioned for sulphur dioxide: the DPR 203/88 (Decree of President of the Republic of 24th May 1988), laying down rules for the authorization of facilities and the Ministerial Decree of 12th July 1990, which introduces plant emission limits. The adoption of these

regulations, as the Ministerial Decree of 8th May 1989 on large combustion plants, has led to a shift in energy consumption from oil with high sulphur content to oil with lower sulphur content and to natural gas.

In recent years, the conversion to the use of natural gas to replace fuel oil has intensified, thanks to incentives granted for the improvement of energy efficiency. These measures, together with those of promoting renewable energy and energy saving, have led to a further reduction of emissions in the sector.

In addition, in the last years, more stringent emission limits to the new plants have been established during the authorisation process with the aim to prevent air quality issues at local level.

Non industrial combustion plants

The increase in emissions is explained by the growing trend of energy consumption during the period considered. This is because in the last twenty years all the new buildings are equipped with heating system and old buildings have been modernized.

A national survey on energy consumption of households, conducted by the National Institute of Statistics (ISTAT, 2014), has supplied the amount of biomass burned to heating. Estimated values of biomass burnt are about 80% higher than previous estimates reported in the National Energy Balance (MSE, several years) and derived from regional or incomplete surveys. From 2013 this new biomass figures are reported in the National Energy Balance. In 2015 the reconstruction backwards of the time series has been finalised, with the collaboration of ISTAT and GSE (Energy Services Manager), and official data have been communicated to Eurostat.

Combustion in industry

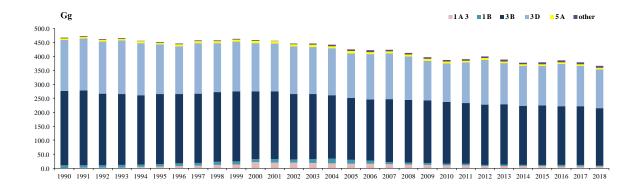
Emissions from this sector show a decreasing trend, motivated by the same reasons as the energy industry, having undergone the same legislation.

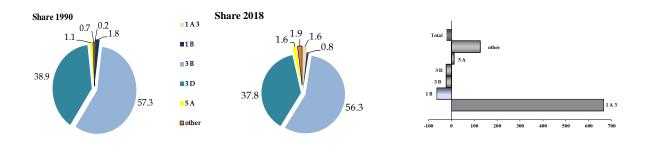
Road transport

The decrease is the result of two opposing trends: an increase in emissions in the early years of the historical series, with a peak in 1992, due to the increase in the fleet and in the total mileage of both passengers and goods transported by road, and a subsequent reduction in emissions. This decrease is, once more, the result of two opposing trends: on one hand, the growth of both the fleet and the mileage, on the other hand the introduction of technologies to reduce vehicle emissions, as the catalytic converter, provided by European Directives, in particular the Directives 91/441/EC (EC, 1991), 94/12/EC (EC, 1994) and 98/69/EC (EC, 1998) on light vehicles.

To encourage the reduction of emissions, different policies have also been implemented, including incentives to renew the public and private fleet and for the purchase of electric vehicles, promotion for the integrated expansion of rail, maritime and urban transport system, and programmes of sustainable mobility.

Other mobile sources and machinery


From 1980 emissions have a slightly rising trend until 1998 and then decrease slightly until arriving in 2017 at lower levels. Emissions in the sector are characterized predominantly by maritime transport, by machinery used in agriculture and industry.


Regarding mobile machinery used in agriculture and industry, these sectors were not governed by any legislation until the Directive 97/68/EC (EC, 1997 [a]), which provides for a reduction in NO_X limits from 1^{st} January 1999, and Directive 2004/26/EC (EC, 2004) which provide further reduction stages with substantial effects from 2011, with a following decreasing trend particularly in recent years.

2.1.3 **Ammonia** (**NH**₃)

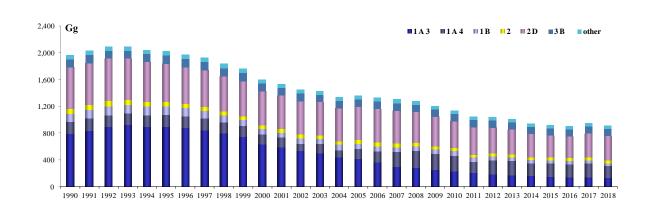
The national atmospheric emissions of ammonia show a slight decline in the period 1990-2018, from 467 Gg to 366 Gg. Figure 2.3 and Table 2.3 report the emission figures from 1990 to 2018. Figure 2.3 also illustrates the share of NH₃ emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

According to the National Emission Ceilings Directive, the target value of emissions for 2010 amounts to 419 Gg which was achieved. The new target established for 2020 in the framework of the UNECE/CLRTAP Convention and relevant protocol is equal for Italy to 95% of 2005 emissions and has been reached. Moreover, the revised national emission Ceiling Directive (EU, 2016) introduced a ceiling equal to 84% of 2005 emissions for 2030.

Figure 2.3 NH₃ emission trend, percentage share by sector and variation 1990-2018

Table 2.3 NH_3 emission trend from 1990 to 2018 (Gg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
			Gg						
Combustion in energy and transformation industries	0.3	0.2	0.2	0.3	0.3	0.3	0.2	0.2	0.2
Non industrial combustion plants	1.1	1.1	1.0	1.0	1.8	1.6	1.5	1.7	1.3
Combustion - Industry	0.1	0.1	0.1	3.5	1.2	0.7	0.9	0.9	0.9
Production processes	0.9	0.5	0.5	0.6	0.6	0.5	0.5	0.6	0.6
Solvent and other product use	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3
Geothermal production	8.4	9.0	12.3	13.3	6.0	4.1	4.7	5.5	2.9
Road transport	0.8	5.3	20.5	15.6	10.0	6.5	6.1	5.7	5.9
Other mobile sources and machinery	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waste treatment and disposal	5.2	6.5	7.4	7.5	7.1	8.5	8.8	8.9	9.0
Agriculture	450	429	416	383	360	356	363	356	345
Total	467	453	458	426	387	379	386	379	366


In 2018 agriculture is the main source of emissions, with a 94% contribution out of the total NH₃ emissions; from 1990 to 2018 emissions from this sector show a decrease of about 23%. Emissions from road transport show a strong increase, but the share on the total is 1.6%. Emissions from waste treatment and disposal, accounting also only for 2.5% of the total, show an increase of about 73% because of the increase of NH₃ emissions from anaerobic digestion at biogas facilities. Emissions from non industrial combustion plants show a relevant increase, but in 2018 the contribution to total emissions is 0.4%. Emissions from combustion in energy and transformation industries as emissions from combustion in industry are not relevant accounting for 0.1% and 0.2% respectively. Emissions from production processes show a reduction of about 45%, but also this contribution is irrelevant as well as emissions from solvent and other product use. Finally, emissions from geothermal production contribute in 2018 for 0.8% of total national emissions.

Specifically, emissions from *agriculture* have decreased because of the reduction in the number of animals and the trend in agricultural production, and the introduction of abatement technologies due to the implementation of the EU IPPC

Directive (EC, 1996). In the last years further emissions reduction result from the implementation of the European Union Rural Development Programs which provide incentives to the introduction of good practice and technologies for the environmental protection and mitigation of GHG and ammonia emissions. Emissions from *road transport* have increased as a result of the introduction of catalytic converter but during the last years a decrease is observed due to the introduction of more stringent limits in the new vehicles. Emissions from *geothermal production* have decreased because of the introduction of control and abatement systems in the production plants. *Waste* sector trend is driven by the increase of biogas facilities due to the incentives for energy production by renewable sources.

2.1.4 Non methane volatile organic compounds (NMVOC)

The national atmospheric emissions of NMVOC show a decreasing trend in the period 1990-2018. Figure 2.4 and Table 2.4 illustrate the emissions values from 1990 to 2018. Figure 2.4 also illustrates the share of NMVOC emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

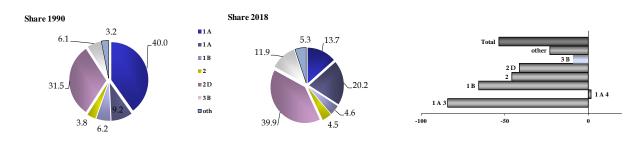


Figure 2.4 NMVOC emission trend, percentage share by sector and variation 1990-2018

The global emission trend shows a reduction of about 54% between 1990 and 2018, from 1,965 Gg to 913 Gg.

In the framework of the National Emission Ceilings Directive (EC, 2001), the target value of NMVOC for 2010 fixed at 1,159 Gg was reached. The new target established in the framework of the UNECE/CLRTAP Convention for 2020 is equal to 65% of 2005 emission level. In the framework of the European National Emission Ceiling Directive (EU, 2016) a target has been established for Italy equal to 54% of 2005 emissions in 2030.

Solvent and other product use is the main source of emissions, contributing to the total with 39% and showing a decrease of about 41%. The main reductions relate to the *road transport* sector (-85%), accounting for 12% of the total and to the sector of *extraction and distribution of fossil fuels/geothermal energy* (-60%), accounting only for 4%. Emissions from *agriculture* decrease of about 10%, accounting for 15% of the national total. Emissions from *other mobile sources and machinery*, accounting for 3% of the total, decrease of about 80%. Emissions from *non industrial combustion plants* show the largest increase (71%), accounting for 19%. Emissions from *waste treatment and disposal* and *combustion in industry* show a decrease of about 6% and 5%, respectively, but both these sources account only for about 1%.

Details on the sectoral emission trend and respective variation are outlined in the following sections.

Table 2.4 NMVOC emission trend from 1990 to 2018 (Gg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Gg					
Combustion in energy and transformation industries	8	7	6	6	5	4	4	4	4
Non industrial combustion plants	103	113	115	125	220	191	188	203	176
Combustion - Industry	7	8	8	8	7	7	7	7	7
Production processes	114	103	89	92	74	57	55	56	53
Extraction and distribution of fossil fuels	91	104	57	54	49	38	40	39	36
Solvent and other product use	610	559	495	479	392	316	311	344	357
Road transport	739	843	576	371	193	132	123	123	109
Other mobile sources and machinery	133	122	98	74	51	30	28	26	26
Waste treatment and disposal	11	13	13	13	12	11	11	11	11
Agriculture	149	150	145	138	134	132	134	135	135
Total	1,965	2,022	1,601	1,361	1,137	917	901	947	913

Solvent and other product use

Emissions from this sector stem from numerous activities such as painting (both domestic and industrial), degreasing and dry cleaning, manufacturing and processing of chemicals, other use of solvents and related activities including the use of household products that contain solvents, such as cosmetics, household products and toiletries.

Significant reductions occurred in the nineties by the introduction in the market of products with low solvent content in paints, and the reduction of the total amount of organic solvent used for metal degreasing and in glues and adhesives; furthermore, in many cases, local authorities have imposed abatement equipment in the industrial painting sector and forced the replacement of open loop with closed loop laundry machines even before the EU Directive 99/13/EC (EC, 1999) came into force.

Road transport

The trend of emissions in this sector is characterized by a first stage of reduction in the early eighties, which occurred despite the increase of consumption and mileage because of the gradual adjustment of the national fleet to the European legislation, ECE Regulation 15 and subsequent amendments, introducing stricter emission limits for passenger cars. Subsequently, in the early nineties, an increase in emissions is observed, with a peak in 1992, due to a high increase in gasoline consumption not efficiently opposed by the replacement of the fleet. With the introduction of Directive 91/441/EC (EC, 1991) and following legislation, which provide

the use of catalytic device to reduce exhaust and evaporative emissions from cars, NMVOC emissions gradually reduced.

A different explanation of the emission trend pertains to the nineties. In fact, in this period an increase of the fleet and the mileage is observed in Italy, especially for the emergent use of mopeds for urban mobility, which, until 1999, were not subject to any national emission regulation. Thereafter, various measures were introduced in order to facilitate the reduction of NMVOC emissions, including incentives for replacement of both the fleet of passenger cars and of mopeds and motorcycles with low-emission vehicles; incentives were also provided for the use of fuels different from gasoline, such as LPG and natural gas. In addition, funds were allocated for the implementation of urban traffic plans, for the establishment of restricted traffic areas and carfree days, for checks on exhaust pipes of cars, for the implementation of voluntary agreements with manufacturers of mopeds and motorcycles in order to anticipate the timing provided by the European Directive 97/24/EC (EC, 1997 [b]) as regards the placing on the market of mopeds with low emissions.

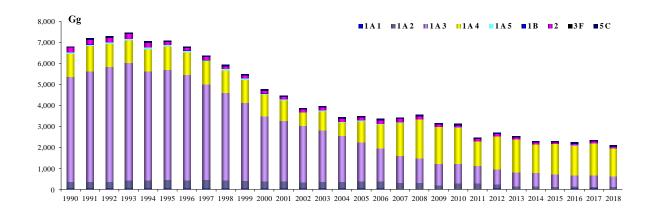
Non industrial combustion plants

The increasing emission trend is driven by the increase of wood biomass fuel consumption for residential heating. The 2013 consumption value reported in the national energy balance results from a detailed survey conducted by the national institute of statistics in 2014 (ISTAT, 2014) and is much higher than previous estimates. In 2015 the reconstruction backwards of the time series of wood combustion has been finalised, with the collaboration of ISTAT and GSE (Energy Services Manager), and official data have been communicated to Eurostat.

Other mobile sources and machinery

The reduction in emissions is explained by the reduction of gasoline consumption in the sector, largely for two-stroke engines used in agriculture and in maritime activities.

Agriculture


NMVOC emissions from agriculture, mainly depend on activity data about different livestock categories. These emissions became significant because of the implementation of the 2016 Guidebook EMEP/EEA emission factors. For the compliance with the established targets these emissions could be subtracted by the total according to the National emission Ceiling Directive (EU, 2016) due to their uncertainty.

As regards the other sectors, a decrease in emissions from production processes is observed, mainly in the food industries, in the chemical sector and in the processes in the refineries. The emissions concerning the extraction and distribution of fuels, even in the presence of an increase in quantity treated, have been reduced as a result of the application of the DM 16th May 1996 (Ministerial Decree 16 May 1996), concerning the adoption of devices for the recovery of vapours and of the applications of measures on deposits of gasoline provided by the DM 21st January 2000 (Ministerial Decree 21 January 2000).

Emissions from the other sectors are not subject to specific regulations.

2.1.5 Carbon monoxide (CO)

The national CO emissions show a decreasing trend in the period 1990-2018, from 6,797 Gg to 2,082 Gg. The emission figures from 1990 to 2018 are shown in Figure 2.5 and Table 2.5. Figure 2.5 also illustrates the share of CO emissions by category in 1990 and 2018, as well as the total and sectoral variation from 1990 to 2018.

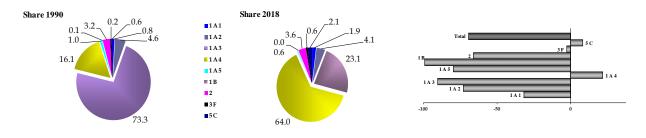
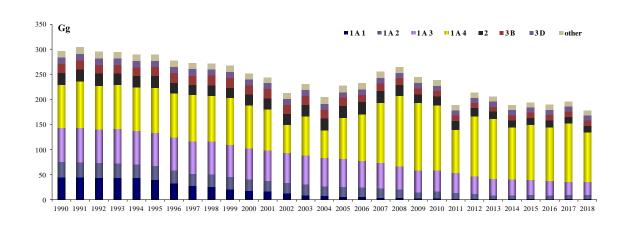


Figure 2.5 CO emission trend, percentage share by sector and variation 1990-2018

Table 2.5 CO emission trend from 1990 to 2018 (Gg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Gg					
Combustion in energy and transformation industries	59	54	54	54	35	40	44	44	40
Non industrial combustion plants	795	894	913	930	1,665	1,395	1,353	1,475	1,289
Combustion - Industry	306	411	315	326	234	93	101	82	79
Production processes	224	140	129	144	105	64	69	72	71
Solvent and other product use	5	5	6	5	5	5	4	4	4
Road transport	4,875	5,106	2,972	1,708	817	511	462	472	414
Other mobile sources and machinery	480	403	303	263	194	137	133	125	129
Waste treatment and disposal	41	47	45	50	47	47	49	46	44
Agriculture	12	12	12	13	12	13	14	12	12
Total	6,797	7,072	4,749	3,494	3,114	2,304	2,228	2,333	2,082


The decrease in emissions (-69%) is mostly due to the trend observed for the transport sector (including road, railways, air and maritime transport) which shows a total reduction from 1990 to 2018 of about 90%. Specifically, by sector, emissions from *road transport* and *other mobile sources and machinery*, accounting in 2018 respectively for 20% and 6% of the total, show a decrease from 1990 to 2018 of about 92% and 73% respectively. On the other hand, emissions from *non industrial combustion plants*, representing about 62% of the total in 2018, show a strong increase between 1990 and 2017, equal to 62% due to the increase of wood combustion for residential heating.

Figures show an increase in emissions from *waste treatment and disposal* too (8%), whose share is 2% of the total and a slight decrease (-3%) for *agriculture* which accounts for less than 1% of the total.

2.2 PARTICULATE MATTER

2.2.1 **PM10**

The national atmospheric emissions of PM10 show a decreasing trend in the period 1990-2018, from 296 Gg to 177 Gg. Figure 2.6 and Table 2.6 illustrate the emission trend from 1990 to 2018. Figure 2.6 also illustrates the share of PM10 emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

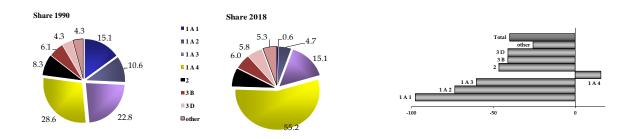
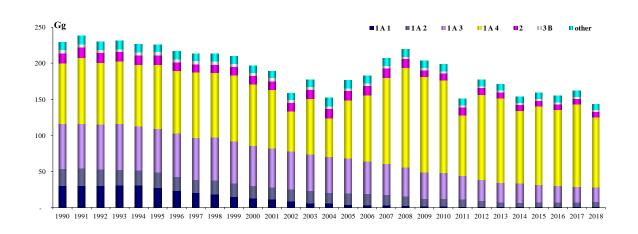


Figure 2.6 PM10 emission trend, percentage share by sector and variation 1990-2018

Table 2.6 *PM10 emission trend from 1990 to 2018(Gg)*

	1990	1995	2000	2005	2010	2015	2016	2017	2018
			Gg						
Combustion in energy and transformation industries	45	40	18	6	3	1	1	1	1
Non industrial combustion plants	68	71	70	69	123	107	104	113	95
Combustion - Industry	28	25	19	18	12	8	8	8	8
Production processes	26	25	23	25	19	14	13	13	13
Extraction and distribution of fossil fuels	0.7	0.6	0.6	0.8	0.7	0.6	0.5	0.5	0.4
Solvent and other product use	4	4	4	4	4	4	3	3	3
Road transport	58	57	52	46	34	25	23	21	21
Other mobile sources and machinery	32	32	30	25	16	10	10	9	9
Waste treatment and disposal	3	3	3	3	3	3	3	3	3
Agriculture	33	33	32	30	23	23	24	23	23
Total	296	290	252	227	238	194	189	196	177


From 1990 to 2018 the trend shows a reduction of about 40%. A considerable amount of emissions is mostly to be attributed to *non industrial combustion plant* (54% in 2018) which is the only sector increasing its emissions, about 41%, due to the increase of wood combustion for residential heating.

Road transport accounts for 12% of total emissions in 2018 and decrease by 64% due to the introduction of the relevant European Directives controlling and limiting PM emissions at the car exhaust pipe.

In 2018 other mobile sources and machinery, accounting for 5% of the total, shows a reduction of about 72% in consideration of the implementation of the relevant European Directives on machinery. Emissions from combustion in industry account for about 4% of the total and decrease by about 71%. Emissions from production processes accounting for 8% of the total in 2018 decrease of about 49% between 1990 and 2018. The largest decrease (-98%) is observed in emissions deriving from combustion in energy and transformation industries, whose contribution to total emissions is almost irrelevant in 2018 and lower than 1%. The reduction in the energy and industrial sectors is mainly due to the introduction of two regulatory instruments, already mentioned for other pollutants, the DPR 203/88 (Decree of President of the Republic of 24th May 1988), laying down rules for the authorization of facilities and the Ministerial Decree of 12th July 1990, which introduces plant emission limits.

2.2.2 **PM2.5**

The trend of the national atmospheric emissions of PM2.5 is decreasing between 1990 and 2018, with a variation from 229 Gg to 143 Gg. Figure 2.7 and Table 2.7 illustrate the emission trend from 1990 to 2018. Figure 2.7 also illustrates the share of PM2.5 emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

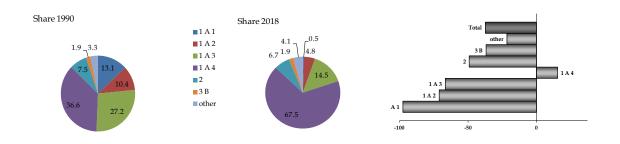
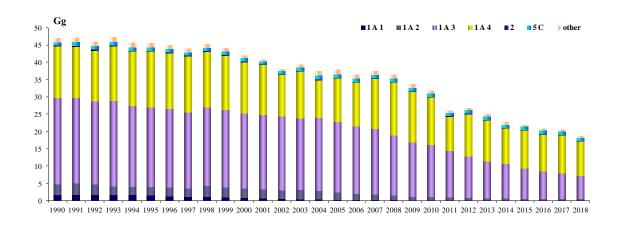


Figure 2.7 PM2.5 emission trend, percentage share by sector and variation 1990-2018

Table 2.7 *PM2.5 emission trend from 1990 to 2018 (Gg)*

	1990	1995	2000	2005	2010	2015	2016	2017	2018
			Gg						
Combustion in energy and transformation industries	30	28	13	4	2	1	1	1	1
Non industrial combustion plants	67	71	69	68	122	106	103	112	94
Combustion - Industry	20	18	14	14	10	6	6	6	7
Production processes	15	14	12	13	11	7	7	7	7
Extraction and distribution of fossil fuels	0.07	0.06	0.06	0.08	0.07	0.06	0.05	0.05	0.04
Solvent and other product use	3	3	4	3	3	3	3	3	3
Road transport	53	51	45	39	27	18	17	15	15
Other mobile sources and machinery	32	32	30	25	16	10	10	9	9
Waste treatment and disposal	2	3	3	3	3	3	3	3	3
Agriculture	7	7	7	7	5	5	6	5	5
Total	229	226	197	176	198	159	155	162	143


In 2018, in the framework of the revision of the Multieffect protocol of the UNECE/CLRTAP Convention, a target has been established for this pollutant. Italy should reduce in 2020 their PM2.5 emissions by 10% with respect the 2005 emission level and it has been reached. Moreover, in the national emission Ceiling Directive a target has been established for 2030 equal to 60% of 2005 emissions.

Total emissions show a global reduction from 1990 to 2018 of about 37%. Specifically, emissions from *road transport*, accounting for 11% of total emissions, decrease of about 71%. Emissions from *other mobile sources and machinery* show a reduction of 72%, accounting in 2018 for 6% of total emissions. Emissions from *non industrial combustion plants* and from *combustion in industry* account for 66% and 5% of the total respectively, but while the former shows an increase of about 41%, the latter decreases by about 67%. Emissions from *waste treatment and disposal*, accounting for 2% of the total in 2018, show an increase of about 6%. The largest decrease is observed for *combustion in energy* and *transformation industries* (-97%), being the influence on the total in 2018 lower than 1%.

For the explanation of the trends see what already reported for PM10.

2.2.3 Black Carbon (BC)

Black Carbon emissions have been estimated as a fraction of PM2.5. National BC atmospheric emissions are decreasing between 1990 and 2018, with a variation from 47 Gg to 19 Gg. Figure 2.7 and Table 2.7 illustrate the emission trend from 1990 to 2018. Figure 2.7 also illustrates the share of BC emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

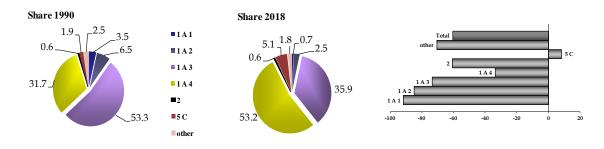
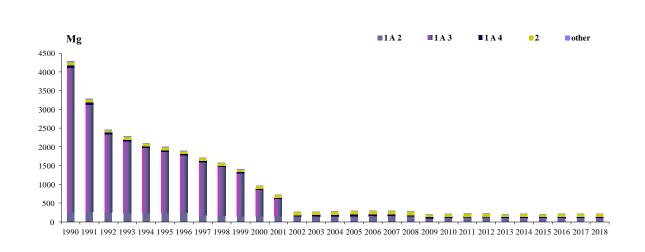


Figure 2.8 BC emission trend, percentage share by sector and variation 1990-2018

Table 2.8 BC emission trend from 1990 to 2018 (Gg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
			Gg						
Combustion in energy and transformation industries	1.6	1.6	0.8	0.3	0.1	0.0	0.0	0.1	0.1
Non industrial combustion plants	5	6	6	6	10	9	9	10	8
Combustion - Industry	0.7	0.6	0.5	0.5	0.4	0.3	0.3	0.3	0.3
Production processes	0.5	0.4	0.3	0.3	0.3	0.2	0.1	0.2	0.1
Extraction and distribution of fossil fuels	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.04	0.04
Road transport	23	22	20	19	14	8	7	6	6
Other mobile sources and machinery	14	14	13	11	6	3	3	3	3
Waste treatment and disposal	1	1	1	1	1	1	1	1	1
Agriculture	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total	47	46	42	38	32	22	21	20	19

Total emissions show a global reduction from 1990 to 2018 of about 60%. Specifically, emissions from *road transport*, accounting for 30% of total emissions, decrease of about 76%. Emissions from *other mobile sources and machinery* show a reduction of 80%, accounting in 2018 for 15% of total emissions. Emissions from *non industrial combustion plants* and from *combustion in industry* account for 45% and 2% of the total respectively, but while the former shows an increase of about 57%, the latter decreases by about 60%. *Industrial processes*, accounting for less than 1% in 2018, decrease of 73%. Emissions from *waste treatment and disposal*, accounting for 5% of the total in 2018, show an increase of about 8%. The largest decrease is observed for *combustion in energy* and *transformation industries* (-92%), being the influence on the total in 2018 less than 1%.


For the explanation of the trends refer to previous paragraph.

2.3 HEAVY METALS (PB, CD, HG)

This section provides an illustration of the most significant developments between 1990 and 2018 of lead, cadmium and mercury emissions.

2.3.1 **Lead (Pb)**

The national atmospheric emissions of lead show a strong decreasing trend (-95%) between 1990 and 2018, varying from 4,289 Mg to 214 Mg. Figure 2.9 and Table 2.9 illustrate the emission trend from 1990 to 2018. Figure 2.9 also illustrates the share of Pb emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

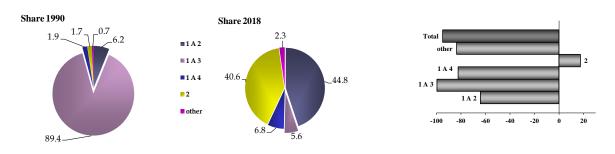
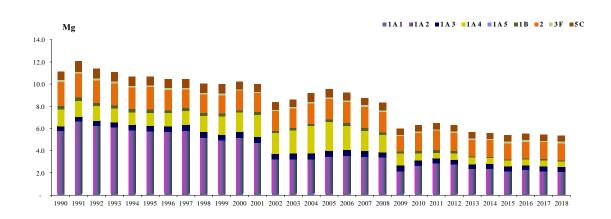


Figure 2.9 Pb emission trend, percentage share by sector and variation 1990-2018


Table 2.9 Pb emission trend from 1990 to 2018 (Mg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018		
Mg											
Combustion in energy and transformation industries	4	4	4	4	3	3	2	2	2		
Non-industrial combustion plants	14	17	22	46	16	15	15	15	14		
Combustion - industry	263	235	154	142	105	95	100	98	96		
Production processes	64	68	67	74	70	66	69	73	76		
Solvent and other product use	12	12	12	12	12	12	12	12	12		
Road transport	3,782	1,617	690	13	12	12	11	10	11		
Other mobile sources and machinery	142	44	13	1	1	1	1	1	1		
Waste treatment and disposal	8	8	5	7	3	3	2	2	2		
Agriculture	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		
Total	4,289	2,005	967	299	221	207	212	214	214		

In 2018 emissions from *combustion in industry* have the most significant impact on the total (45%) and show a reduction of about 64%; this reduction is to be attributed primarily to *processes with contact*, which contribute with 58% to the sectoral reduction and account for almost the total share of the sector. Emissions from *production processes* and, in particular, from processes in iron and steel industries and collieries, increased by about 19%, and represent 35% of the total. Emissions from *non industrial combustion plants* show a slight increase and represent, in 2018, 7% of the total. As to emissions from *transport* activities, because of changes occurred in the legislation regarding fuels, trends show a sharp reduction in emissions from 2002 onwards.

2.3.2 **Cadmium (Cd)**

The national atmospheric emissions of cadmium show a slight decreasing trend. Figure 2.10 and Table 2.10 illustrate the emission trend from 1990 to 2018. Figure 2.10 also illustrates the share of Cd emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

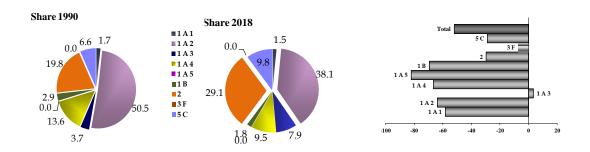
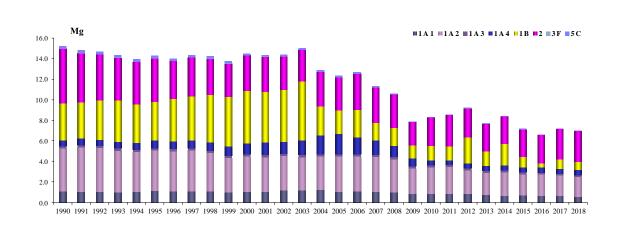
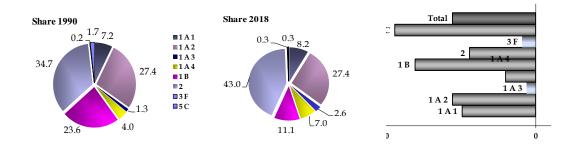


Figure 2.10 Cd emission trend, percentage share by sector and variation 1990-2018


Table 2.10 *Cd emission trend from 1990 to 2018 (Mg)*


	1990	1995	2000	2005	2010	2015	2016	2017	2018		
	Mg										
Combustion in energy and transformation industries	0.19	0.20	0.17	0.16	0.13	0.10	0.09	0.09	0.08		
Non-industrial combustion plants	1.51	1.20	1.74	2.61	0.66	0.55	0.53	0.55	0.50		
Combustion - industry	5.61	5.56	4.99	3.29	2.50	2.03	2.16	2.07	2.03		
Production processes	2.01	1.78	1.42	1.52	1.35	1.14	1.19	1.24	1.26		
Solvent and other product use	0.51	0.51	0.56	0.52	0.49	0.42	0.41	0.40	0.39		
Road transport	0.39	0.47	0.50	0.51	0.46	0.43	0.42	0.42	0.41		
Other mobile sources and machinery	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02		
Waste treatment and disposal	0.74	0.81	0.69	0.75	0.55	0.57	0.57	0.54	0.52		
Agriculture	0.13	0.13	0.12	0.13	0.12	0.13	0.14	0.12	0.12		
Total	11.11	10.68	10.22	9.53	6.28	5.39	5.53	5.44	5.33		

Emissions show a global reduction of 52% between 1990 and 2018, from 11.1 Mg to 5.3 Mg, mainly driven by the reduction of emissions in the non ferrous metal industry, with the installation of the relevant abatement technologies and the drop of production. Among the most significant variations, emissions from *combustion in industry* and from *non industrial combustion plants* represent 38% and 9% of the total respectively, showing a decrease of -64% and 67% respectively. Emissions from *production processes* decrease by about 37% and represent 24% of the total. Emissions from *waste treatment and disposal* (i.e. waste incineration), accounting for 10% of the total, register a reduction of about 29% while emissions from *road transport* accounting for 8% of the total levels increase of 5% and emissions from *stubble burning in agriculture* account for 2% of the total and decrease of about 7%.

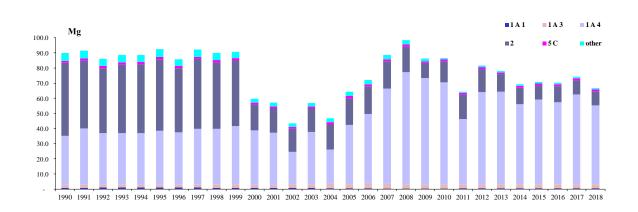
2.3.3 Mercury (Hg)

The national atmospheric emissions of mercury show a quite stable trend in the period 1990-2018. Figure 2.11 and Table 2.11 illustrate the emission trend from 1990 to 2018. Figure 2.11 also illustrates the share of Hg emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

Figure 2.11 Hg emission trend, percentage share by sector and variation 1990-2018

Table 2.11 *Hg emission trend from 1990 to 2018 (Mg)*

	1990	1995	2000	2005	2010	2015	2016	2017	2018
			М	'g					
Combustion in energy and transformation industries	1.10	1.14	1.06	1.07	0.86	0.69	0.65	0.64	0.58
Non-industrial combustion plants	0.61	0.71	1.04	1.97	0.52	0.49	0.48	0.49	0.49
Combustion - industry	4.17	3.95	3.43	3.41	2.55	2.06	2.07	1.97	1.92
Production processes	5.47	4.36	3.59	3.36	2.87	2.70	2.74	3.01	3.07
Geothermal production	3.40	3.62	4.96	2.15	1.25	0.98	0.40	0.85	0.72
Road transport	0.19	0.23	0.24	0.24	0.21	0.19	0.18	0.17	0.18
Waste treatment and disposal	0.26	0.23	0.12	0.15	0.01	0.03	0.01	0.02	0.02
Agriculture	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	15.22	14.26	14.46	12.37	8.29	7.16	6.57	7.18	7.00


Emission trend shows a global reduction of about 54% from 1990 to 2018, varying from 15.2 Mg to 7.0 Mg. The general trend is driven by reduction of emissions in lead and zinc production industry as well as in cement production industry, with the installation of the relevant abatement technologies. The main variations concern: emissions from *combustion in industry - processes with contact*, accounting for 23% and decreasing by 54%; emissions from *production process - processes in iron and steel industries and collieries*, representing 44% of the total and increasing by 23%; emissions from *non industrial combustion plants* which represent 7% of the total and decrease by 19%. Emissions deriving from *combustion in energy and transformation industries*, accounting for 8%, show a 48% reduction. Emissions from *production process - processes in inorganic chemical industries*, not contributing to the total in 2018, show a reduction equal to 100% totally due to the technological changes for the production of chlorine. Emissions from *road transport* account for 3% and decrease of 6%. Emissions from *waste treatment and disposal* and *agriculture*, contributing to the total only for less than 1%, show a large reduction, equal respectively to 91% and 9%. Emissions from *geothermal production* account for 10% of the national total and shows a reduction of 79% with respect to 1990 due to the introduction of control and abatement system at the production plants.

2.4 Persistent organic pollutants (POPs)

In this section, the most significant peculiarities of polycyclic aromatic hydrocarbons and dioxins, occurred between 1990 and 2018, will be presented.

2.4.1 Polycyclic aromatic hydrocarbons (PAH)

The national atmospheric emissions of polycyclic aromatic hydrocarbons decreased from 90 Mg to 67 Mg between 1990 and 2018. Figure 2.12 and Table 2.12 illustrate the emission trend from 1990 to 2018. Figure 2.12 also illustrates the share of PAH emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

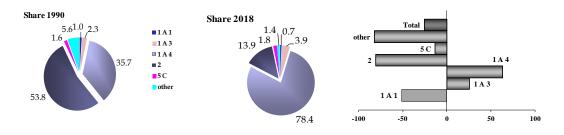
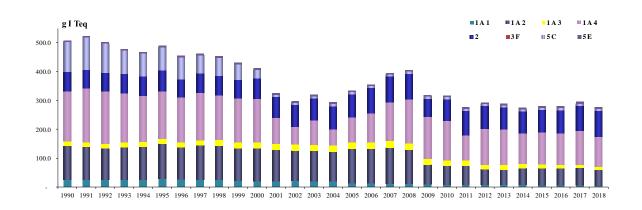


Figure 2.12 PAH emission trend, percentage share by sector and variation 1990-2018

Table 2.12 *PAH emission trend from 1990 to 2018 (Mg)*


	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Мд					
Combustion in energy and transformation industries	0.9	1.0	0.7	0.5	0.4	0.5	0.5	0.5	0.5
Non-industrial combustion plants	32	35	36	39	67	56	54	59	52
Combustion - industry	5	5	2	2	0	1	1	1	1
Production processes	48	47	17	18	14	9	10	10	9
Solvent and other product use	0	0	0	0	0	0	0	0	0
Road transport	2	2	2	3	3	3	3	3	3
Other mobile sources and machinery	0.3	0.3	0.3	0.4	0.3	0.2	0.2	0.2	0.3
Waste treatment and disposal	1	1	1	1	1	1	1	1	1
Agriculture	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total	90	92	60	64	87	71	70	74	67

Between 1990 and 2018, total emissions show a decrease of about 26%. Among the most significant changes, *non industrial combustion plants*, prevalently *residential plants*, account for 78% of the total in 2018 and show a strong increase (about 64%) due to the increase in wood consumption for heating.

Emissions from *production processes*, mainly *processes in iron* and *steel industries*, account for 14% of the total and show a decrease of 81% due to the adoption of best abatement technologies for the coke production; emissions from *waste treatment and disposal*, mainly open burning of agricultural wastes except stubble burning, account for 2% of the total and show a decrease of 13%. Emissions from *road transport*, accounting for 4% in 2018, show an increase of about 28%. The share of other subsectors is about 1%.

2.4.2 **Dioxins**

The national atmospheric emissions of dioxins show a decreasing trend between 1990 and 2018, with values varying from 508 g I Teq to 227 g I Teq. Figure 2.13 and Table 2.13 illustrate the emission trend from 1990 to 2018. Figure 2.13 also illustrates the share of dioxin emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

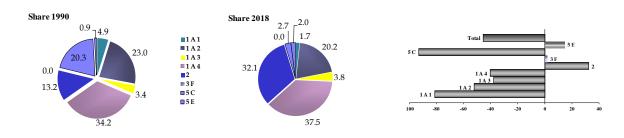
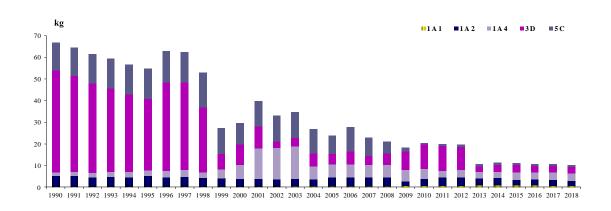


Figure 2.13 Dioxin emission trend, percentage share by sector and variation 1990-2018

Table 2.13 Dioxin emission trend from 1990 to 2018 (g I Teq)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
			g I Te	q					
Combustion in energy and transformation industries	25	28	21	14	8	6	6	5	5
Non-industrial combustion plants	174	165	151	87	135	112	109	118	104
Combustion - industry	117	121	112	119	65	58	59	60	56
Production processes	67	72	71	79	76	77	79	86	89
Solvent and other product use	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Road transport	17	19	22	23	20	14	13	12	11
Other mobile sources and machinery	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Waste treatment and disposal	108	84	34	13	12	13	14	15	13
Agriculture	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total	508	488	410	334	316	281	279	296	277

The general trend shows a decrease from 1990 to 2018 equal to 45%, with a noticeable decline between 1995 and 2004 and between 2008 and 2011 because of the implementation of abatement system in the largest Italian integrated iron and steel plant (steel production > 80% with respect to national production from integrated plants):


- Double filtering system ESP (ElectroStatic Precipitator) + MEEP (Moving Electrode Electrostatic Precipitator);
- Reduction of the chlorine amount in the charge;
- Injections of urea (able to form stable compounds with metals that catalyze the formation of dioxins).

The most considerable reductions, between 1990 and 2018, are observed in *waste treatment and disposal*, *combustion in energy and transformation industries* and *combustion in industry*, (-88%, -81% and -52%, respectively). Specifically, the reduction is principally due to the cut of emissions from the combustion of municipal waste both with energy recovery, reported under the non industrial sector, and without recovery, reported under the waste sector due to the introduction of regulations establishing more stringent limits of dioxin emissions from stacks.

In 2018, the subsectors which have contributed most to total emissions are *non-industrial combustion plants* production processes and combustion in industry accounting for 37%, 32% and 20% of the total respectively. In particular emissions from production processes show an increase of 32% in the period 1990-2018 due to the increase of the iron and steel production in electric arc furnaces.

2.4.3 Hexachlorobenzene (HCB)

The national atmospheric emissions of hexachlorobenzene show a decreasing trend in the period 1990-2018, varying from 67 kg to 10 kg due to the decrease of the use of pesticide in agriculture. Figure 2.14 and Table 2.14 illustrate the emission trend from 1990 to 2018. Figure 2.14 also illustrates the share of HCB emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

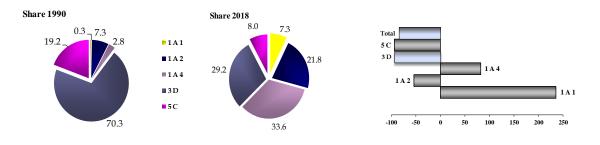
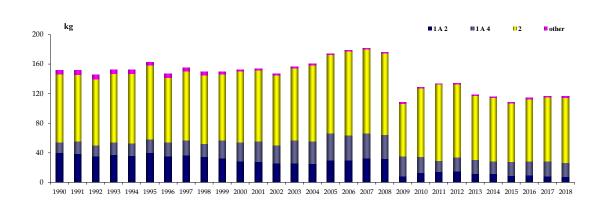


Figure 2.14 HCB emission trend, percentage share by sector and variation 1990-2018

Table 2.14 HCB emission trend from 1990 to 2018 (Mg)


	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Mg					
Combustion in energy and transformation industries	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001
Non-industrial combustion plants	0.002	0.003	0.006	0.006	0.004	0.003	0.003	0.004	0.003
Combustion - industry	0.005	0.005	0.004	0.004	0.003	0.003	0.003	0.002	0.002
Road transport	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Other mobile sources and machinery	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Waste treatment and disposal	0.013	0.014	0.010	0.008	0.000	0.001	0.001	0.001	0.001
Agriculture	0.047	0.033	0.010	0.005	0.011	0.003	0.003	0.003	0.003
Total	0.067	0.055	0.030	0.024	0.020	0.011	0.011	0.011	0.010

The use of pesticide in *agriculture* category is the main driver for the decreasing trend of the HCB national emissions, emissions from this category show 94% decrease between 1990 and 2018. The second sector contributing to the general trend is *waste treatment and disposal*, in particular waste incineration - sludge incineration. Specifically, the considerable increase of the amount of sludge burnt at a specific incinerator is the reason of the peaks observed in 2001-2003 (incineration with energy recovery). The other relevant sectors are *combustion in industry* and *non industrial combustion plants* accounting for 22% and 34% respectively. Emissions from *combustion in energy and transformation industry* and emissions from *non industrial combustion plants* show an increase of 236% and 82% respectively between 1990 and 2018. In the same years for emissions from *waste treatment and disposal* a decrease of 94% must be noted while emissions from combustion in industry show a decrease of 54%.

2.4.4 Polychlorinated biphenyl (PCB)

The national atmospheric emissions of polychlorinated biphenyl show a decreasing trend in the period 1990-2018, about -23%, from 152 kg to 116 kg.

Figure 2.15 and Table 2.15 illustrate the emission trend from 1990 to 2018. Figure 2.15 also illustrates the share of PCB emissions by category in 1990 and 2018 as well as the total and sectoral variation from 1990 to 2018.

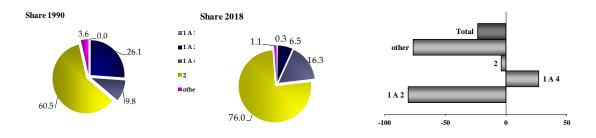


Figure 2.15 PCB emission trend, percentage share by sector and variation 1990-2018

Table 2.15 *PCB emission trend from 1990 to 2018 (Mg)*

	1990	1995	2000	2005	2010	2015	2016	2017	2018
			M_{c}	g					
Combustion in energy and transformation industries	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Non-industrial combustion plants	0.015	0.018	0.025	0.036	0.022	0.019	0.018	0.020	0.019
Combustion - industry	0.040	0.040	0.029	0.030	0.013	0.009	0.010	0.008	0.008
Production processes	0.092	0.100	0.096	0.106	0.093	0.079	0.084	0.087	0.088
Road transport	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Other mobile sources and machinery	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Waste treatment and disposal	0.005	0.005	0.002	0.002	0.001	0.001	0.001	0.001	0.001
Total	0.152	0.163	0.152	0.174	0.128	0.109	0.114	0.117	0.116

Between 1990 and 2018, total emissions show a decrease of about 23%. Among the most significant variations, emissions from *combustion in industry* and from *production processes* represent 7% and 77% of the total respectively, showing the former a decrease of -81% and the latter of 4%. The noticeable decline between 2008 and 2009 was due to the implementation of abatement systems in the largest Italian steel plant. The other relevant sector is *non industrial combustion plants* accounting for 16% and relevantly increasing (28%) between 1990 and 2018. The share of other sectors is about 1%.

3 ENERGY (NFR SECTOR 1)

3.1 OVERVIEW OF THE SECTOR

For the pollutants and sources discussed in this section, emissions result from the combustion of fuel. All the pollutants reported under the UNECE/CLRTAP are estimated. Stationary and mobile categories are covered for:

- Electricity production (power plants and Industrial producers);
- Refineries (Combustion);
- Iron and steel industries (Combustion)
- Chemical and petrochemical industries (Combustion);
- Construction industries (roof tiles, bricks);
- Other industries (metal works factories, food, textiles, others);
- Road Transport;
- · Coastal Shipping;
- Railways;
- Aircraft;
- Domestic heating;
- Commercial heating;
- Public Service;
- Fishing and Agriculture.

Fugitive emissions are also reported under the energy sector as well as emissions from geothermal production.

The national emission inventory is prepared using energy consumption information available from national statistics and an estimate of the actual use of the fuels. The latter information is available at sectoral level in a different number of publications and different details, such as fuel consumption, distance travelled or some other statistical data related to emissions. For most of the combustion source categories, emissions are estimated from fuel consumption data reported in the National Energy Balance (BEN) as supplied by the Ministry for the Economic Development (MSE, several years (a)) and reported to the international energy organization, and from emission factors appropriate to the type of combustion and the pollutant.

The estimate from fuel consumption emission factors refers to stationary combustion in boilers and heaters. The other categories are estimated by more complex methods discussed in the relevant sections. The fuel consumption of "Other industries" is estimated so that the total fuel consumption of these sources is consistent with the national energy balance.

Electricity generation by companies primarily for their own use is auto-generation, and the relevant emissions should be reported under the industry concerned. However, national energy statistics report emissions from electricity generation as a separate category. The Italian inventory makes an overall calculation and then attempts to report as far as possible according to the guidelines:

- auto-generators are reported in the relevant industrial sectors of section "1.A.2 Manufacturing Industries and Construction";
- refineries auto-generation is included in section 1.A.1b;

- iron and steel auto-generation is included in section 1.A.1c
- incinerators auto-generation of energy and heat is included in section 1.A.4a.

These reports are based on estimates of fuel used for steam generation connected with electricity production supplied by the National Independent System Operator (TERNA, several years).

Emissions from the energy production plants in integrated iron and steel plants and emissions from coke ovens are included in 1.A.1c category. Emissions from waste incineration facilities with energy recovery are reported under category 1.A.4a i (Combustion activity, commercial/institutional sector), whereas emissions from other types of waste incineration facilities are reported under category 5.C (Waste incineration). In particular, for 2018, almost 99% of the total amount of waste incinerated is treated in plants with energy recovery system. The energy recovered by these plants is mainly used for district heating of commercial buildings or used to satisfy the internal energy demand of the plants and only a small percentage of energy produced goes to the electricity grid (around 10%). Different emission factors for municipal, industrial and oils, hospital waste, and sewage sludge are applied, as reported in the waste chapter. Waste amount is then converted in energy content applying the relevant factor as resulting from data provided by TERNA, which in 2018 is equal to 11.0 GJ/t of waste.

Landfill gas is generally recovered and used for heating and power in commercial facilities, the resulting emissions are reported under 1.A.4.a. Biogas recovered from the anaerobic digester of animal waste is used for utilities in the agriculture sector and relative emissions are reported under 1.A.4.c.

Under 1.A.2 g vii industrial off road machinery are reported; the methodology used to estimate emissions from a range of portable or mobile equipment powered by reciprocating diesel engines is summarized. Industrial off-road include construction equipment such as bulldozers, loaders, graders, scrapers, rollers and excavators and other industrial machines as portable generators, compressors and cement mixers. Estimates are calculated taking in account especially the population of the different classes, annual usage, average power rating, load factor and technology distribution (EURO) according to the Guidebook (EMEP/EEA, 2016). COPERT II has been used for years 1994 and 1995 to estimate emissions and average emission factors for vehicles and diesel fuel consumption. Population data have been estimated on the basis on a survey of machinery sales. Machinery lifetime was estimated on the European averages reported in EMEP/CORINAIR, 2007, the annual usage data were taken either from industry or published data by EEA. The emission factors used came from EMEP/EEA and COPERT. The load factors were taken from COPERT. It was possible to calculate fuel consumptions for each class based on fuel consumption factors given in EMEP/CORINAIR, 2007. Comparison with known fuel consumption for certain groups of classes suggested that the population method overestimated fuel consumption by factors of 1.2-1.5 for industrial vehicles. Time series is reconstructed in relation to the diesel fuel use in industry reported in the national energy balance as gasoil final consumption. Emission factors for NO_X, CO, NMVOC and PM have been updated taking in account the reduction factors established in the European Directive 97/68/EC, the timing of application of the new limits and the tax of penetration of the new industrial vehicles in the total fleet. Emission reduction factor reported in the European Directive 2004/26/EC Directive have been applied and introduced in the emission estimates.

In 2018 the energy sector accounts for more than 50% of total emissions for all the estimated pollutants, except for NMVOC, which accounts for 40%, PCB for 23% and ammonia for 3%. In particular, emissions from the energy sector are 94% of CO and BC, 91% of NO_X , 88% of PM2.5, 87% of SO_X and 84% of PAH national total emissions.

In 2018, the following categories are key categories for different pollutants: public electricity and heat production (1A1a), petroleum refining (1A1b), stationary combustion in iron and steel industries (1A2a), stationary combustion in non ferrous metal industries (1A2b), stationary combustion in non metallic mineral industries (1A2f), road transport categories (1A3b), national navigation (1A3d ii), stationary combustion plants in commercial/institutional (1A4a i) and residential (1A4b i), off-road vehicles in agriculture, forestry and fishing (1A4c ii), fugitive emissions from refining and storage (1B2a iv), fugitive emissions from natural gas (1B2b) and other fugitive emissions from energy geothermal production (1B2d).

Other fugitive emissions from energy production

The same categories are key categories for 1990, except (1B2b), and for the trend analysis. In addition, for 1990, stationary combustion in chemical industries (1A2c) for SO_x and PM10, mobile combustion in

manufacturing industries and construction (1A2g vii) for BC, stationary combustion in other industries (1A2g viii) for SO_x, and fugitive emissions from distribution of oil products (1B2a v) for NMVOC emissions are also key categories.

3.2 METHODOLOGICAL ISSUES

Methodologies used for estimating emissions from this sector are based on and conform to the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007; EMEP/EEA, 2013; EMEP/EEA, 2016), the IPCC Guidelines (IPCC, 1997; IPCC, 2006) and the Good Practice Guidance (IPCC, 2000).

Specifically for road transport, the most recent version of COPERT 5 programme, version 5.2.2, has been used to calculate emissions (EMISIA SA, 2019); the updated version of the model has been applied for the whole time series. In paragraph 3.8 more detailed information is supplied on these figures.

A detailed description on the methods and national specific circumstances as well as reference material of the energy sector is documented in the national inventory report of the Italian greenhouse gas inventory (ISPRA, 2020[a]). At national level, trends of the CLRTAP pollutants are described in the environmental data yearbook published by ISPRA (ISPRA, 2019).

The National Energy Balance, published by the Ministry of Economic Development, is the main source of information to estimate emissions from the energy sector as it reports fuel consumption for different sectors at national level. Additional information for electricity production is provided by the major national electricity producers and by the major national industry corporation. On the other hand, basic activity data for road transport, maritime and aviation, such as the number of vehicles, harbour statistics and aircraft landing and take-off cycles are provided in statistical yearbooks published both by the National Institute of Statistics and the Ministry of Transportation. Other data are communicated by different category associations.

The emission factors used are based on national sources, or else on values specified in the EMEP/EEA guidebook and/or IPCC guidelines which are appropriate for Italy. Emission factors used for energy and manufacturing industries and non industrial combustion, specifically categories 1A1, 1A2, 1A4, and their references are available on the ISPRA website at http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni/fattori-di-emissione-per-le-sorgenti-di-combustione-stazionarie-in-italia/view as well as emission factors for road transport (1A3b) are available at http://www.sinanet.isprambiente.it/it/sia-ispra/fetransp/.

For 1A1 categories, a Tier 3 is used and SO_x, NO_x and PM10 emissions are estimated on the basis of emission and consumption data provided by the relevant plants in the framework of LCP and ETS European Directives and EPRTR Regulation. The average implied emission factors at fuel level result from the analysis of the information provided and available at plant level, including technologies for energy production and emissions abatement. These IEF at fuel level have been used to estimate emissions for those plants where some pollutants have not been declared and to verify emissions declared. PM 2.5 is estimated applying the ratio between PM2.5 and PM10 reported in the Tier 2 tables of the EMEP/EEA 2016 Guidebook at fuel level. In particular for 1A1b category, the implied emission factor refers both to the production of energy and heat and to the other combustion activities in refineries. With regard to Hg and heavy metals country specific emission factors for each fuel have been used to estimate emissions as provided by the main national operator in relation with the technologies while for PCB, emission factors for coal, oil products and wood biomass from the EMEP/EEA Guidebook 2019 have been used following the recommendation of the review process (EEA,2019). Emission factors for the PAH, Dioxin and HCB for Italy are from a study of TNO at European level (Berdowski et al, 1997). For 1A1c category and in particular for coke production according to the review (EEA, 2019) PAH emission factor have been disaggregated into those deriving from the combustion process and the fugitive ones and estimated with the emission factors in the Guidebook (EMEP/EEA, 2019).

In response to the review process a survey has been conducted to verify if emission data submitted by operators are calculated subtracting the confidence interval. The issue has been discussed also with the colleagues from the Ministry of Environment (IMELS) in charge of the implementation at national level for the IED legislation. In principle it is to be noted that the validated average values (with the confidence interval subtracted from the measured data) are the data used to verify the compliance of the operators to prescriptions

included in the permits issued to the same operators and not for the calculation of the total annual emissions submitted in the framework of the relevant European Union Directives and Regulations. In addition the implementation at national level of the IED requires Italian operators with emissions reported on the basis of Continuous Monitoring System data to refer to confidence intervals which are not those included in the IED: in fact, the confidence intervals must result from quality assurance procedure and the implementation of UNI EN 14181:2005 and QAL2 procedure. This national circumstance implies that the validated average values used by the Italian operators are more realistic compared to those calculated using the procedure laid out in the IED. Moreover, the use of CMS at the stacks is largely implemented at facilities with installations exceeding 50 MWth input. In order to assess consistency along the timeseries, data reported by the largest Italian operator in the Energy production (about 25% of energy production) show that no issues concerning consistency can be raised. For consistency issue we believe that official data, as air emission values, communicated by the operators in the EU official frameworks, as the LCP Directive, PRTR registry and IPPC Directive should be considered as they were reported and without any further adjustment (apart from QA/QC procedures).

Notation key NO for activity is used in particular indicating that a fuel is not consumed at all while NA is reported in the column where is requested to specify a different indicator than fuel consumption.

For 1A2 categories, estimates for chemical, food processing, and other sectors (as textile, mechanics, extraction) are based on fuel consumption where EMEP/CORINAIR 2007 emission factors at fuel level have been used except for SO_X, NO_X and PM10 which are estimated on the basis of emission and consumption data provided by the relevant plants in the framework of LCP and ETS European Directives and EPRTR Regulation. PM 2.5 is estimated applying the ratio between PM2.5 and PM10 reported in the Tier 2 tables of the EMEP/EEA 2016 Guidebook at fuel level. With regard to heavy metals, country specific emission factors for each fuel have been used to estimate emissions as provided by the main national operator in relation with the technologies, while for PCB emission factors for coal, oil products and wood biomass from the EMEP/EEA Guidebook 2019 have been used following the recommendation of the review process (EEA,2019). Emission factors for the PAH, Dioxin and HCB for Italy are from a study of TNO at European level (Berdowski et al, 1997). For the iron and steel, non ferrous metal, pulp and paper and non metallic minerals sectors emission estimates are based on production data at SNAP category level. SO_X, NO_X and PM10 emission factors time series are estimated based on the communication from operators in the framework of LCP Directive and EPRTR Regulation and industrial association at SNAP activity code level. For NMVOC, default EFs of EMEP/CORINAIR 2007 Guidebook are prevalently used except for glass and lead production where country specific emission factors are used; emission factors provided in the EMEP/EEA 2016 Guidebook are not appropriate because of they are calculated for small combustion boilers while emissions in this category refer prevalently to boilers >20 MWt for auto-production of energy and heat in the industrial sectors.

More in detail for 1A2a, which include combustion activities from the iron and steel sector as blast furnace cowpers, sinter plants and reheating furnaces, Dioxins, PCB, HCB, PAH and Pb emissions are estimated on the basis of country specific emission factors at activity level, especially referring to sinter plants production, as provided by the main national operators. In particular, HCB emissions come from sinter plant productions and the emission factor is from the 2006 EMEP/CORINAIR Guidebook and it is coherent with data provided by the main national operator. Cd emissions refer to blast furnaces, sinter and reheating activities and are driven by sinter plant productions which account for more than 65% of the total; emission factors are those reported by the main Italian plant in the ninety years. For Hg and the other HMs emission factors are from the IPPC Bref sectoral report (JRC, 2013) and/or EMEP/EEA Guidebook 2006.

For 1A2b, non ferrous metal sector, HCB emission factors available in the Guidebook refer to the consumption of coal and other solid fuels and wood biomass while in Italy only natural gas and small amount of LPG and fuel oil are used so notation key NA is reported. Dioxin emissions from this category is driven by emissions from secondary aluminium production where country specific emission factors are used based on measurements at plant level in the ninety; such emissions are due prevalently to the role played by recycled material. For Hg emission factors are from EMEP/CORINAIR 2007 Guidebook. Moreover, for primary and secondary lead production, emission factors for SOX, NOX, NMVOC, CO, Pb, PM10 are country specific, from a sectoral technical survey (ENEA, 2000) and from the communication of the operators, as well as for PAH e dioxins (ENEA-AIB-MATTM, 2002). For the other pollutants emission factors are from EMEP/CORINAIR 2007 but they have been shared and checked with the main operator. For primary zinc production SOX, CO, Pb, PM, Zn and Cd emission factors are country specific as provided by the only operator while for the other pollutants are from the EMEP/CORINAIR Guidebook 2007 taking in account the weight

of the different production processes, electrolytic and Imperial Smelting Furnace. For secondary aluminium production PAH and dioxins country specific emission factors have been used (ENEA-AIB-MATTM, 2002).

Category 1A2f, stationary combustion in non-metallic mineral industry, refers to a multitude of production activities such as cement, lime, glass, brick and tiles, ceramics, and asphalt production which means a multitude of different emission factors. For cement production, PM emissions from kilns are reported in this category where emissions from mills are reported in IPPU (emission factor from USEPA 1991 EF handbook) while for lime production PM emission factors referring to the complete process are used (from USEPA 1996 EF handbook) and emissions are distributed between energy and IPPU. For Hg, emission factors are country specific (especially cement production which is the emission driver of this category); for Dioxin, HCB, PCB and Cd emission factors are from the relevant Bref reports or EMEP/EEA 2007 Guidebook; for Pb, emission factors are country specific for ceramic production and from the bref report or EMEP 2006 Guidebook for glass, cement and lime productions.

The Institute, specifically the same unit responsible for the inventory, also collects data in the context of the European Emissions Trading Scheme, the National Pollutant Release and Transfer Register (Italian PRTR) and the Large Combustion Plants (LCP) Directives. All these data are managed and used to compile the inventory. Figures are cross checked to develop country-specific emission factors and input activity data; whenever data cannot be straight used for the inventory compilation, they are considered as verification. EPER/EPRTR data are yearly available from 2002 while ETS data from 2005 and LCP data from 1990 all on yearly basis. In the EPRTR registry total emissions divided by category are reported by plants if they exceed the relevant ceiling for each pollutant. LCP data refer only to SOx, NOx and PM emissions that are collected in stacks over 50 MWth and could result in figures lower than those reported in the EPRTR. In the ETS only CO₂ and fuel consumption data are reported. QA/QC checks at plants level are directed to check the submissions of data in the different context and evaluate the differences if any. For example, if emissions submitted by a plant under LCP are higher than those submitted under the EPRTR we ask the operator of the reporting plant for an explanation and the verification of data submitted. In addition, on the basis of fuel consumption supplied under the ETS and average emission factor by fuel we estimate emissions at plant level and compare them with those submitted in the EPRTR and LCP. Also in this case we ask for clarifications to the reporting plant if necessary.

3.3 TIME SERIES AND KEY CATEGORIES

The following sections present an outline of the main key categories in the energy sector. Table 3.1 highlights the key categories identified in the sector.

The energy sector is the main source of emissions in Italy with a share of more than 80% for different pollutants under the UNECE convention; specifically, for the main pollutants, in 2018 the sector accounts for:

- 94% in national total CO emissions;
- 94% in national total BC emissions;
- 91% in national total NO_X emissions;
- 88% in national total PM2.5 emissions;
- 87% in national total SO_X emissions;
- 84% in national total PAH emissions.

Moreover, the sector is also an important source for heavy metals; specifically in 2018, energy sector is responsible for 59% of total Cd emissions and accounts for a high share of other heavy metals, As (98.6%), Cu (96%), Ni (85%), Se (87%).

There are no differences as compared to the sectoral share in 1990, except for lead whose contribution in 1990 was 98% of total emissions, 30% higher than in 2018.

One of the most important source of emissions in the sector and key category, in 2018, is represented by *road transport* (1A3b), at least for the main pollutants: NO_x (43.4%), BC (30.4%), CO (19.9%), NMVOC (11.9%), Cd (7.7%) and particulate matter (PM10 11.8%, PM2.5 10.5%). There has been a strong reduction in lead emissions from 1990 to 2018 in *road transport* due to replacement of lead gasoline. An in depth analysis of the road transport category and its emission trends is reported in paragraph 3.8.

Manufacturing industries and construction (1A2) is a main source of heavy metals and POPs, accounting for about 45% of lead total emissions, 38% for cadmium, 27% for mercury, 22% for HCB, and 20% for dioxin. The sector is key category also for PM10 and PM2.5 (5%) as well as SO_X and NO_X , about 24% and 9% of total emissions. The main sectors are iron and steel sector, which is key for SO_X , Pb, Cd, Hg and HCB, the non-ferrous metal sector, key for Hg and Dioxin, and non metallic mineral sector that is key category for SO_X , NO_X , PM10, PM2.5, Pb, Cd and Hg.

Public electricity and heat production (1A1a) is a key source of SO_X emissions in 2018 with a share of 8.0%, HCB (7.3%), Hg (6.8) and NO_X emissions (4.2%). A strong reduction of SO_X, NO_X and PM10 emissions is observed for this category along the time series (as well as for 1A2 sector). The introduction of two regulatory instruments: the DPR 203/88 (Decree of President of the Republic of 24th May 1988), laying down rules concerning the authorisation of plants, and the Ministerial Decree of 12th July 1990, which introduced plant level limits to emissions of PM10, NO_x and SO_x for new plants and required old plants to conform to the limit by 1997, explained the emission reduction in the nineties. The shift from fuel oil to natural gas combined with the increase of energy efficiency of the plants and the introduction of PM10 abatement technologies have been implemented to comply with the emission limit values. From 2000 lower limits to emissions at the stacks have been introduced, in the framework of environmental integrated authorisations, for the authorisation of new plants and the implementation of the old ones, especially for those facilities located in areas with air quality critical values. For this reason the plants have increased the use of natural gas heat and power combined technology. In 2018 in Italy there are still 8 coal plants, of which only 7 fully working, and 1 fuel oil plant out of around 150 power plants included in this source category. With exception of few biomass plants and some gasoil stationary engines in the small islands, the other plants are natural gas combined cycle thermoelectric power plant.

Petroleum refining (1A1b) is a key category for SO_X emissions in 2018 with a share of 5.6%. Emissions are estimated on the basis of emission and consumption data provided by refineries in the framework of LCP, ETS European Directives and EPRTR Regulation and refer both to the production of energy and heat and to the other combustion activities in the plants. Emission trends are driven by the same legislation quoted for 1A1a category, where specific rules and ceiling were set up for refineries.

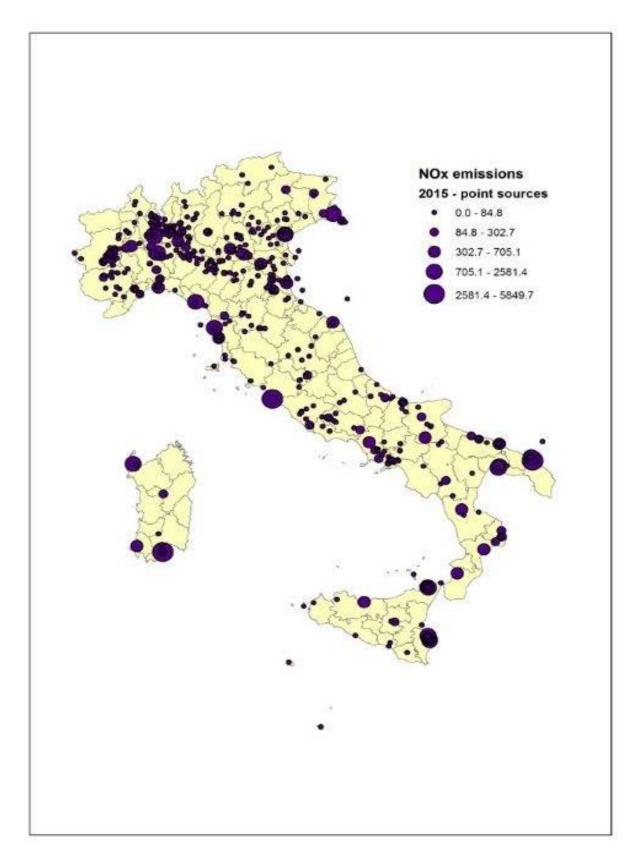
National *navigation* (1A3d ii) is key category for SO_X (19.7%), NO_X (11.0%), CO (2.9%), PM10 (3.2%) PM2.5 (3.9%) and BC (5.2%) .The weight of this category on the total emissions has increased for SO_X and NO_X during the period because of a sectoral delay in the introduction of relevant normative to reduce air emissions.

A sector increasing its level of emissions is the *non-industrial combustion* (1A4): NO_X and NMVOC, emissions of this category account in 2018 for 18.6% and 20.2% of national total, respectively; SO_X emission account for 9.4%; CO emissions account for 64.0%; CO emissions account for 9.2%; CO emissions account for 55.2% and 67.5% respectively while CO emissions account for 53.2%; dioxin is 37.5%, CO PAH is 78.4%, CO PCB is 16.1% and HCB is 33.6% of national totals. These emissions are prevalently due to biomass combustion, in winter, and they are also becoming critical for air quality issues and for HCB due to the increase of combustion of waste with energy recovery reported under the sector. An in depth analysis of this category is reported in the paragraph 3.12. *Fishing activities* (1A4cii) is key categories for CO NO_X (4.6%) and CO BC (5.6%).

Fugitive emissions in refinery from fossil fuel distribution and storage (1B2a iv) is key category in 2018 for SO_X emissions (14.2%). Total SO_X fugitive emissions from distribution of fossil fuels account for 17.9% of the total. Fugitive emission from natural gas (1B2b) is key category for NMVOC emissions accounting for 2.2% of national total emissions and Fugitive emissions from geothermal energy production is key category for Hg for 10.2% of national total emissions.

Table 3.1 *Key categories in the energy sector in 2018*

	1A1 a	1A1 b	1A1 c	1A2	1A2 g vii	1A3 a i	1A3 a ii	1A3 b i	1A3 b ii	1A3 b iii	1A3 b iv	1A3 b v	1A3 b vi	1A3 b vii	1A3 c	1A3 d ii	1A3 e i	1A4 a i	1A4 bi	1A4 bii	1A4 c	1A5 b	1B1 a	1B1 b	1B2
SO _x	8.0	5.6	1.8	24.0	0.0	0.3	0.2	0.2	0.0	0.1	0.0				0.0	19.7	0.0	3.9	5.5	0.0	0.1	0.1			17.9
NO _x	4.2	1.4	0.5	8.6	0.8	0.8	0.3	23.2	6.8	12.8	0.7				0.3	11.0	0.1	5.1	6.1	0.0	7.4	0.3			0.8
NH_3	0.0	0.0	0.0	0.2	0.0			1.5	0.0	0.0	0.0				0.0	0.0		0.0	0.4	0.0	0.0	0.0			0.8
NMVOC	0.3	0.1	0.0	0.7	0.1	0.1	0.0	2.6	0.2	0.3	3.6	5.2			0.0	1.7	0.0	3.1	16.0	0.1	1.0	0.0		0.1	4.5
СО	1.0	0.2	0.8	3.8	0.3	0.2	0.1	12.0	0.8	1.2	5.8				0.0	2.9	0.0	1.3	60.1	0.1	2.5	0.6			0.0
PM10	0.3	0.1	0.2	4.5	0.2	0.0	0.0	2.3	0.9	0.9	0.3		4.9	2.5	0.0	3.2	0.0	0.7	52.7	0.0	1.8	0.2	0.2	0.1	0.1
PM2.5	0.2	0.1	0.2	4.6	0.2	0.0	0.0	2.9	1.1	1.1	0.4		3.3	1.6	0.0	3.9	0.0	0.9	64.4	0.0	2.2	0.2	0.0	0.0	0.1
ВС	0.1	0.0	0.7	1.6	0.9	0.1	0.0	17.1	6.8	6.0	0.5				0.2	5.2	0.0	0.7	44.5	0.0	8.0	0.9	0.2	0.1	0.1
Pb	0.8	0.1	0.0	44.8		0.3	0.1	0.0	0.0	0.0	0.0		5.1			0.1		2.5	4.3		0.0	0.0		0.2	0.0
Cd	1.2	0.3	0.0	38.0	0.0	0.0	0.0	5.0	0.6	0.4	0.7		1.0		0.0	0.3		1.6	7.5	0.0	0.4	0.0		1.8	0.0
Hg	6.8	1.3	0.2	27.4				1.8	0.3	0.4	0.1		0.0					3.3	3.4		0.2			0.8	10.2
РАН	0.6	0.0	0.0	0.8	0.0	0.0	0.0	2.6	0.4	0.5	0.0		0.1		0.0	0.1		0.8	76.9	0.0	0.7	0.0			
Dioxin	0.8	0.9		20.2				2.9	0.5	0.3	0.1					0.0		1.0	36.2		0.2				
НСВ	7.3			21.7				0.1	0.0	0.0	0.0					0.0		18.4	15.2		0.1				
РСВ	0.3			6.5				0.0	0.0	0.0	0.0					0.0		2.7	13.3		0.1				


Note: key categories are shaded in blue

3.4 QA/QC AND VERIFICATION

A complete description of methodological and activity data improvements are documented every year in a QA/QC plan (ISPRA, 2020[b]).

The analysis of data collected from point sources allowed to distribute emissions at local level, for 2015 and previous years, as submitted under the CLTRAP. To illustrate an example, NO_X emissions from point sources are reported in Figure 3.1 for the year 2015. Point sources include public electricity and heat production plants, petroleum refineries, stationary combustion plants (*iron and steel, non-ferrous metals, chemicals, clinker*) and pipeline compressors.

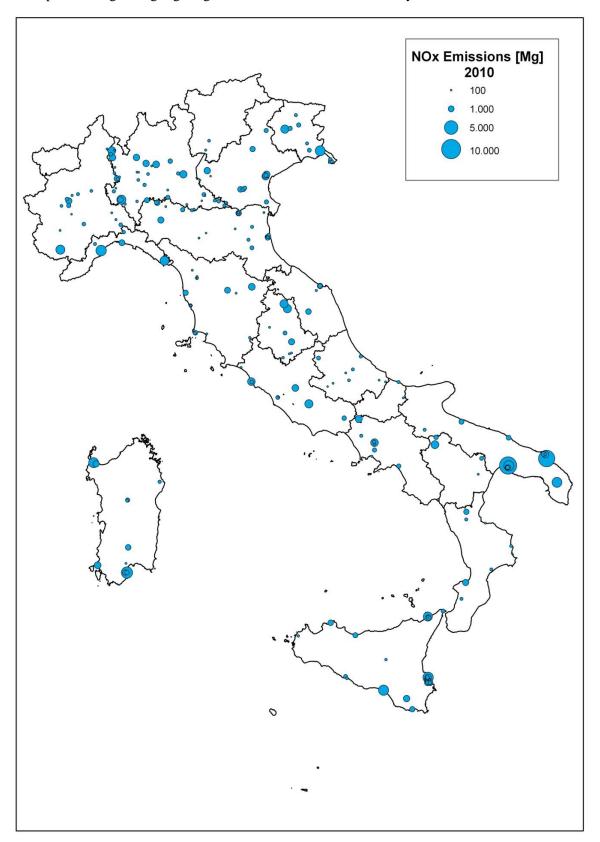
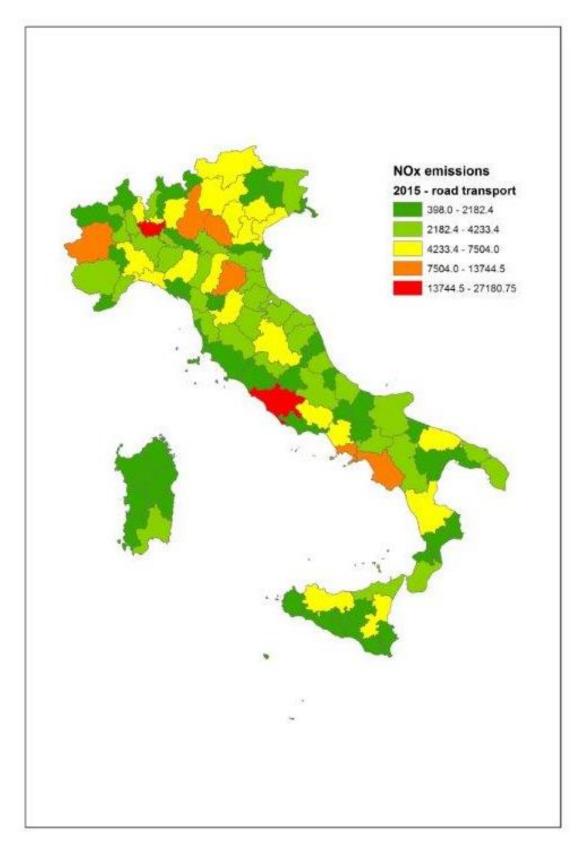

The figure highlights that the most critical industrial areas are distributed in few regions.

Figure 3.1 NO_X emissions from point sources in 2015 (t)


In Figure 3.2, NO_X emissions communicated by 229 facilities (power plants, refineries, cement plants and iron and steel integrated plants), in the framework of the national E-PRTR register and LCP Directive, have

been processed and geographically located. The territorial distribution shows similar results to those reported in the previous figure highlighting the industrial areas still in activity in 2010.

Figure 3.2 NO_X emissions from point sources in 2010 (t)

Every five years emissions are disaggregated at regional and provincial levels and figures are compared to the results obtained by regional bottom-up inventories. Emissions disaggregated at local level are also used as input for air quality modelling. NO_X emissions from *road transport* have been disaggregated at NUTS3 level; the disaggregation related to the year 2015 is reported in Figure 3.3 whereas methodologies are described in the relevant publication (ISPRA, 2009).

Figure 3.3 NO_X emissions from road transport in 2015 (t)

3.5 RECALCULATIONS

In the 2018 submission different recalculations have been performed in the energy sector.

For 1.A.1 and 1.A.2 categories the whole time series of liquid fuel consumption and from 1990 to 2004 of natural gas fuel consumptions have been updated on the basis of figures submitted by the Ministry of Economic Development to the Joint Questionnaire IEA/OECD/EUROSTAT. Moreover, according to the review, PCB emission factors have been updated for the whole time series with those reported in the 2019 EMEP/EEA Guidebook (EMEP/EEA, 2019) for coal, lignite and biomass, resulting in null emissions for those categories where only liquid fuel are consumed because no emission factor are available for fuel oil in the new Guidebook.

For 1.A.1.c category, and in particular for coke production, PAH emission factors have been updated with those available in the EMEP/EEA Guidebook (EMEP/EEA, 2019) as recommended by the review (EEA, 2019).

For 1.A.2.d paper production activity data for 2017 has been updated.

For 1.A.3.a category, aviation, fuel consumption and emissions have been updated from 2005 to 2016 with those provided for Italy by EUROCONTROL.

For road transport (1.A.3.b), the upgraded version of COPERT 5, v.5.2.2 has been used and a general review of mileages with reference to a better distribution between the vehicles categories based on national statistics, resulted in a revision of emission estimates for the whole time series. More details are reported in paragraph 3.8.

For 1.A.3.d maritime activities, and in particular gasoline consumption in inland waterways, the percentage of four stroke gasoline engines respecting the limits of the EU Directive 2003/44 has been updated for 2016 and 2017 resulting in a recalculation for CO, NO_X and NMVOC emissions.

For 1.A.4, NO_X emission factors for natural gas have been updated from 2016 on the basis of the new information on the appliances sold for those years; with regard to waste fuel consumption for commercial heating PM, POPs and HMs emission factors from 2006 have been updated, according to the review process (EEA, 2019), resulting in a general reduction of the weight of these emissions on the total; moreover, activity data for 2017 has been updated. For residential heating, Average emission factors for wood combustion have been updated according to a new distribution of technologies. More detailed information is reported in paragraph 3.12.

For 1B minor updates occurred with respect liquid fuel distribution except gasoline activity data for 2017.

3.6 PLANNED IMPROVEMENTS

Specific improvements are detailed in the 2020 QA/QC plan (ISPRA, 2020[b]).

For the *energy* sector, a major progress regards the management of the information system where data collected in the framework of different obligations, Large Combustion Plant, E-PRTR and Emissions Trading, are gathered together thus highlighting the main discrepancies in information and detecting potential errors. Moreover, the complete use of the energy data provided by the Ministry of Economic Development to the Joint Questionnaire IEA/OECD/EUROSTAT is planned in substitution of the national energy balances used till now; liquid, gaseous and solid fuel are now aligned for the whole time series and we plan for the next submission to update as possible renewable fuels and biomass.

Further progress will regard the maritime sector improving the annual estimations on the basis of detailed databases on ships movements.

With respect to PM10 and heavy metals emissions from *Public Electricity and Heat Production* category (1A1a) while PM10 emissions are updated every year on the basis of data submitted by the plants in the framework of the EPRTR registry, Large Combustion Plants Directive and Environmental Reports, heavy metals emission factors time series have been reconstructed from 1990 to 2001 on the basis of a study

conducted by ENEL (major company in Italy) which reports heavy metals emissions measurements by fuel and technology (with or without PM10 abatement technologies) of relevant national plants. From 2001 these emission factors have not been updated. Heavy metals emission data in the EPRTR registry refer only to few not representative plants and are not sufficient to calculate average emission factors. Further work is planned to update/change emission factors for those pollutants, as zinc, where figures reported in the EPRTR lead to average values significantly different from those actually used.

3.7 AVIATION (NFR SUBSECTOR 1.A.3.A)

3.7.1 **Overview**

Emissions from categories 1.A.3.a.i International Aviation and 1.A.3.a.ii Domestic Aviation are estimated, including figures both for landing and take-off cycles (LTO) and for the cruise phase of the flight (the latter reported as memo items and not included in the national totals).

3.7.2 **Methodological issues**

According to the IPCC Guidelines and Good Practice Guidance (IPCC, 1997; IPCC, 2006; IPCC, 2000) and the EMEP/EEA Guidebook 2016 (EMEP/EEA, 2016), a national technique has been developed and applied to estimate emissions.

The current method estimates emissions from the following assumptions and information.

Activity data comprise both fuel consumptions and aircraft movements, which are available in different level of aggregation and derive from different sources as specified here below:

- Total inland deliveries of aviation gasoline and jet fuel are provided in the national energy balance (MSE, several years (a)). This figure is the best approximation of aviation fuel consumption, for international and domestic use, but it is reported as a total and not split between domestic and international.
- Data on annual arrivals and departures of domestic and international landing and take-off cycles at Italian airports are reported by different sources: National Institute of Statistics in the statistics yearbooks (ISTAT, several years), Ministry of Transport in the national transport statistics yearbooks (MIT, several years), the Italian civil aviation in the national aviation statistics yearbooks (ENAC/MIT, several years), EUROCONTROL flights data time series 2002–2018 (EUROCONTROL, several years).

An overall assessment and comparison with EUROCONTROL emission estimates was carried out over the years and that lead to an update of the methodology used by Italy for this category. Data on the number of flights, fuel consumption and emission factors were provided by EUROCONTROL in the framework of a specific project funded by the European Commission, and quality checked by the European Environmental Agency and its relevant Topic Centre (ETC/ACM), aimed at improving the reporting and the quality of emission estimates from the aviation sector of each EU Member State under both the UNFCCC and LRTAP conventions. The Advanced Emissions Model (AEM) was applied by EUROCONTROL to derive these figures, according to a Tier 3 methodology (EMEP/EEA, 2016).

EUROCONTROL fuel and emissions time series cover the period 2005-2018, while the number of flights is available since 2002. EUROCONTROL data, related to Italy, on the number of flights have been used to update the national inventory from 2002, while fuel and emissions data have been used since 2005; HC emissions (both NMVOC and CH4) and cruise emissions of CO, have been updated after new data supplied by EUROCONTROL.

For the time series from 1990 to 1999, figures for emission and consumption factors are derived by the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007), both for LTO cycles and cruise phases, taking into account national specificities.

These specificities derived from the results of a national study which, taking into account detailed information on the Italian air fleet and the origin-destination flights for the year 1999, calculated national values for both domestic and international flights (Romano et al., 1999; ANPA, 2001; Trozzi et al., 2002 (a)) on the basis of the default emission and consumption factors reported in the EMEP/CORINAIR guidebook. National average emissions and consumption factors were therefore estimated for LTO cycles and cruise both for domestic and international flights from 1990 to 1999. Specifically, for the year referred to in the survey, the method estimates emissions from the number of aircraft movements broken down by aircraft and engine type (derived from ICAO database if not specified) at each of the principal Italian airports; information about whether the flight is international or domestic and the related distance travelled has also been considered. A Tier 3 method has been applied for 1999. In fact, figures on the number of flights, destination, aircraft fleet and engines have

been provided by the local airport authorities, national airlines and EUROCONTROL, covering about 80% of the national official statistics on aircraft movements for the relevant years. Data on 'Times in mode' have also been supplied by the four principal airports and estimates for the other minor airports have been carried out on the basis of previous sectoral studies at local level. Consumption and emission factors are those derived from the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007). Based on sample information, estimates have been carried out at national level from 1990 to 1999 considering the official statistics of the aviation sector (ENAC/MIT, several years) and applying the average consumption and emission factors.

From 2005, fuel consumption and emission factors were derived from the database made available to EU Member States by EUROCONTROL, as previously described. These data were used for updating fuel consumption factors, and emission factors of all pollutants. For the period between 1999 and 2005, interpolation has been applied to calculate these parameters. Estimates were carried out applying the consumption and emission factors to the national official aviation statistics (ENAC/MIT, several years) and EUROCONTROL data on movements from 2002 (EUROCONTROL, several years).

In general, to carry out national estimates of greenhouse gases and other pollutants for LTO cycles, both domestic and international, consumptions and emissions are calculated for the complete time series using the average consumption and emission factors multiplied by the total number of flights. The same method is used to estimate emissions for domestic cruise; on the other hand, for international cruise, consumptions are derived by difference from the total fuel consumption reported in the national energy balance and the estimated values as described above and emissions are therefore calculated.

The fuel split between national and international fuel use in aviation is then supplied to the Ministry of the Economical Development to be included in the official international submission of energy statistics to the IEA in the framework of the Joint Questionnaire OECD/EUROSTAT/IEA compilation together with other energy data.

Data on domestic and international aircraft movements from 1990 to 2018 are shown in Table 3.2 where domestic flights are those entirely within Italy.

Since 2002, EUROCONTROL flights data have been considered, accounting for departures from and arrivals to all airports in Italy, regarding flights flying under instrument flight rules (IFR), including civil helicopters flights and excluding flights flagged as military, when the above flights can be identified.

Total fuel consumptions, both domestic and international, are reported by LTO and cruise in Table 3.3.

 Table 3.2 Aircraft Movement Data (LTO cycles)

Number of flights	1990	1995	2000	2005	2010	2015	2016	2017	2018
Domestic flights	172,148	185,220	319,748	350,140	354,520	280,645	277,872	281,498	284,646
International flights	147,875	198,848	303,608	381,206	406,990	425,410	446,817	462,896	484,764

Source: ISTAT, several years; ENAC/MIT, several years; Eurocontrol, several years.

Table 3.3 Aviation jet fuel consumptions for domestic and international flights (Gg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Gg					
Domestic LTO	111	120	208	232	226	168	166	169	179
International LTO	130	175	258	267	295	327	342	353	382
Domestic cruise	357	384	654	664	702	524	524	542	562
International cruise	1,246	1,688	2,298	2,461	2,538	2,748	2,966	3,233	3,359

Source: ISPRA elaborations

Emissions from military aircrafts are also estimated and reported under category 1.A.5 Other. The methodology to estimate military aviation emissions is simpler than the one described for civil aviation since LTO data are not available in this case. As for activity data, total consumption for military aviation is published in the petrochemical bulletin (MSE, several years (b)) by fuel. Emission factors are those provided in the

EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007). Therefore, emissions are calculated by multiplying military fuel consumption data for the EMEP/CORINAIR default emission factors.

3.7.3 Time series and key categories

Emission time series of NO_X , NMVOC, SO_X , TSP, CO, Pb are reported in Table 3.4, Table 3.5, Table 3.6, Table 3.7, Table 3.8 and Table 3.9, respectively.

An upward trend in emission levels for civil aviation is observed from 1990 to 2018 which is explained by the increasing number of LTO cycles. Nevertheless, the propagation of more modern aircrafts in the fleet slows down the trend in the most recent years. There has also been a decrease in the number of domestic flights from 2000, although a new increasing trend in the last couple of years has been registered. Aviation is not a key category.

Table 3.4 Time series of $NO_X(Gg)$

Source categories for NFR Subsector 1.A.3.a, 1.A.5.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
					Gg				
1 A 3 a ii (i) Domestic aviation LTO (civil)	1.36	1.47	2.49	2.52	2.69	2.10	2.09	2.11	2.29
1 A 3 a i (i) International aviation LTO (civil)	1.60	2.16	3.20	3.41	4.00	4.57	4.86	5.04	5.34
1 A 3 a Civil Aviation (LTO)	2.97	3.62	5.69	5.93	6.69	6.67	6.95	7.15	7.63
1A3 a ii (ii) Domestic aviation cruise (civil)	5.23	5.63	9.39	8.48	10.06	7.98	7.98	8.11	8.48
1A3a i (ii) International aviation cruise (civil)	18.85	26.83	38.70	34.33	38.16	43.31	46.07	47.80	50.61
$1\ A\ 5\ b\ Other,\ Mobile\ (including\ military,\ land\ based\ and\ recreational\ boats)$	11.16	11.99	7.24	13.50	6.11	3.29	3.28	2.36	2.05

Table 3.5 *Time series of NMVOC (Gg)*

Source categories for NFR Subsector 1.A.3.a, 1.A.5.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
					Gg				
1 A 3 a ii (i) Domestic aviation LTO (civil)	0.13	0.14	0.23	0.26	0.34	0.27	0.26	0.27	0.29
1 A 3 a i (i) International aviation LTO (civil)	0.19	0.25	0.38	0.48	0.45	0.50	0.49	0.48	0.51
1 A 3 a Civil Aviation (LTO)	0.31	0.39	0.61	0.74	0.79	0.77	0.75	0.75	0.80
1A3 a ii (ii) Domestic aviation cruise (civil)	0.10	0.11	0.19	0.21	0.38	0.34	0.33	0.34	0.35
1A3a i (ii) International aviation cruise (civil)	0.27	0.38	0.58	0.73	0.83	0.89	0.92	0.92	0.92
1 A 5 b Other, Mobile (including military, land based and recreational boats)	3.00	3.13	1.90	3.00	1.05	0.66	0.70	0.48	0.44

Table 3.6 Time series of $SO_X(Gg)$

Source categories for NFR Subsector 1.A.3.a, 1.A.5.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
					Gg				
1 A 3 a ii (i) Domestic aviation LTO (civil)	0.11	0.12	0.21	0.23	0.23	0.17	0.17	0.17	0.18
1 A 3 a i (i) International aviation LTO (civil)	0.13	0.17	0.26	0.27	0.29	0.33	0.34	0.35	0.38
1 A 3 a Civil Aviation (LTO)	0.24	0.29	0.47	0.50	0.52	0.49	0.51	0.52	0.56
1A3 a ii (ii) Domestic aviation cruise (civil)	0.36	0.38	0.65	0.66	0.70	0.52	0.52	0.54	0.56

Source categories for NFR Subsector 1.A.3.a, 1.A.5.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
1A3a i (ii) International aviation cruise (civil)	1.25	1.78	2.59	2.38	2.54	2.81	2.96	3.09	3.32
1A5b Other, Mobile (including military, land based and recreational boats)	1.19	0.81	0.21	0.17	0.13	0.12	0.15	0.08	0.10

Table 3.7 *Time series of TSP (Gg)*

Source categories for NFR Subsector 1.A.3.a, 1.A.5.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
					Gg				
1 A 3 a ii (i) Domestic aviation LTO (civil)	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
1 A 3 a i (i) International aviation LTO (civil)	0.01	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.04
1 A 3 a Civil Aviation (LTO)	0.02	0.03	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1A3 a ii (ii) Domestic aviation cruise (civil)	0.07	0.08	0.13	0.09	0.09	0.07	0.07	0.07	0.08
1A3a i (ii) International aviation cruise (civil)	0.40	0.57	0.82	0.75	0.84	0.91	0.94	0.94	0.94
1 A 5 b Other, Mobile (including military, land based and recreational boats)	1.30	1.57	0.91	1.63	0.83	0.48	0.50	0.34	0.32

Table 3.8 Time series of CO (Gg)

Source categories for NFR Subsector 1.A.3.a, 1.A.5.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
					Gg				
1 A 3 a ii (i) Domestic aviation LTO (civil)	1.23	1.33	2.27	2.36	2.32	1.73	1.68	1.76	1.88
1 A 3 a i (i) International aviation LTO (civil)	1.73	2.32	3.33	2.89	2.98	3.24	3.30	3.34	3.76
1 A 3 a Civil Aviation (LTO)	2.96	3.64	5.60	5.25	5.30	4.97	4.98	5.10	5.64
1A3 a ii (ii) Domestic aviation cruise (civil)	1.41	1.51	2.61	2.86	3.23	2.42	2.38	2.50	2.58
1A3a i (ii) International aviation cruise (civil)	2.20	3.15	4.80	6.03	5.97	6.32	6.56	6.66	7.25
1 A 5 b Other, Mobile (including military, land based and recreational boats)	65.12	79.02	45.49	54.48	17.33	16.49	19.73	11.93	13.23

Table 3.9 Time series of Pb (Mg)

Source categories for NFR Subsector 1.A.3.a, 1.A.5.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
					Gg				
1 A 3 a ii (i) Domestic aviation LTO (civil)	0.19	0.20	0.35	0.38	0.38	0.30	0.30	0.30	0.31
1 A 3 a i (i) International aviation LTO (civil)	0.21	0.28	0.43	0.54	0.57	0.60	0.63	0.65	0.68
1 A 3 a Civil Aviation (LTO)	0.40	0.48	0.77	0.92	0.95	0.90	0.93	0.96	0.99
1A3 a ii (ii) Domestic aviation cruise (civil)	0.57	0.62	1.06	1.16	1.18	0.93	0.92	0.94	0.95
1A3a i (ii) International aviation cruise (civil)	2.01	2.86	4.36	5.48	5.85	6.11	6.42	6.65	6.96
1 A 5 b Other, Mobile (including military, land based and recreational boats)	16.34	4.22	1.16	0.001	NA	0.12	0.02	0.02	0.09

3.7.4 QA/QC and Uncertainty

Data used for estimating emissions from the aviation sector derive from different sources: local airport authorities, national airlines operators, EUROCONTROL and official statistics by different Ministries and national authorities.

Different QA/QC and verification activities are carried out for this category.

As regards past years, the results of the national studies and methodologies, applied at national and airport level, were shared with national experts in the framework of an *ad hoc* working group on air emissions instituted by the National Aviation Authority (ENAC). The group, chaired by ISPRA, included participants from ENAC, Ministry of Environment, Land and Sea, Ministry of Transport, national airlines and local airport authorities. The results reflected differences between airports, aircrafts used and times in mode spent for each operation.

Currently, verification and comparison activities regard activity data and emission factors. In particular, number of flights have been compared considering different sources: ENAC, ASSAEROPORTI, ISTAT, EUROCONTROL and verification activities have been performed on the basis of the updated EUROCONTROL data on fuel consumption and emission factors resulting in an update and improving of the national inventory.

Furthermore, there is an ongoing collaboration and data exchange with regional environmental agencies on this issue.

3.7.5 **Recalculations**

Recalculations were performed in this submission, due to the update of EUROCONTROL data time series from 2005 to 2016.

3.7.6 Planned improvements

Improvements for next submissions are planned on the basis of the outcome of the ongoing quality assurance and quality control activities, in particular with regard to the results of investigation about data and information deriving from different sources, in particular further assessment of EUROCONTROL data, and comparison with information provided by the national institute of statistics, ISTAT, on the number of flights.

3.8 ROAD TRANSPORT (NFR SUBSECTOR 1.A.3.B)

3.8.1 Overview

The road transport sector contributes to the total national emissions in 2018 as follows: nitrogen oxides emissions for 43.5% of the total; emissions of carbon monoxide for 19.9%, non-methane volatile organic compounds for 11.9%, PM10 and PM2.5, for 11.8% and 10.5%, respectively, of the total.

The estimation refers to the following vehicle categories:

- ➤ 1.A.3.b.i Passenger cars
- ➤ 1.A.3.b.ii Light-duty trucks
- ➤ 1.A.3.b.iii Heavy-duty vehicles including buses
- ➤ 1.A.3.b.iv Mopeds and motorcycles
- ➤ 1.A.3.b.v Gasoline evaporation
- ➤ 1.A.3.b.vi Road transport: Automobile tyre and brake wear
- ➤ 1.A.3.b.vii Road transport: Automobile road abrasion

3.8.2 **Methodological issues**

A national methodology has been developed and applied to estimate emissions according to the IPCC Guidelines and Good Practice Guidance (IPCC, 1997; IPCC, 2000; IPCC, 2006) and the EMEP/EEA Guidebook (EMEP/EEA, 2019).

In general, the annual update of the model is based on the availability of new measurements and studies regarding road transport emissions (for further information see: http://www.emisia.com/copert/).

The model COPERT 5 (updated version 5.2.2, February 2019) has been used and applied for the whole time series in 2019 and 2020 submissions. COPERT 5 introduces upgrades both from software and methodological point of view respect to the previous model COPERT 4 used (https://www.emisia.com/utilities/copert/versions/). New methodological features have been introduced.

As regards fuel, updates concern: fuel energy instead of fuel mass calculations; distinction between primary and end (blends) fuels, automated energy balance.

Regarding vehicle types, updated vehicle category naming, new vehicle types and emission control technology level, have been introduced.

As regards emission factors, one function type and the possibility to distinguish between peak/off-peak urban, have been implemented.

Main innovations introduced since the previous model version used (in submission 2018, version 5.1.1 had been used) relate: the correction of CH₄ Hot Emission Factor for PC, LCV vehicles; changes to the upper speed limits of the hot emission functions to avoid negative values for HDV; updated evaporation factors for mopeds and motorcycles; updated NMVOC profile for evaporation emissions; new road abrasion non-exhaust emissions; the correction of NFR export regarding differentiation between 2-stroke and 4-stroke vehicles regarding emissions from lubricant consumption and the inclusion of non-exhaust emissions from road abrasion; the correction of Aromatics/Benzene NMVOC Parameters for CNG vehicles; the correction of Benzene exhaust share for PC Small/Medium Diesel Euro 6; the correction of LCV technology shares for all Euro 3 to 5 vehicles; the correction of NH₃ emission factors for Buses and Coaches; the correction of NH₃ emission factors for HDV Euro 4 and before; the correction of the fuel tank size and canister size of LCV Vehicles and L-category vehicles; other minor bugs relating copying SCR data between years, bugs regarding fuel balance for Bi-fuelled vehicles and fuel balanced mileage export to Excel.

The model, on the basis of the inputs inserted, gives output results separately for vehicles category and urban (peak/off-peak urban), rural, highway areas, concerning emission estimates of CO, VOC, NMVOC, CH₄, NO_X, N₂O, NH₃, PM2.5, PM10, PM exhaust (the emission factors of particulate matter from combustion refer to particles smaller than 2.5 µm, that implicitly assumes that the fraction of particulate matter with

diameter between 2.5 μ m and 10 μ m is negligible), CO₂, SO₂, heavy metals, NO_X speciation in NO e NO₂, the speciation in elemental and organic carbon of PM, the speciation of NMVOC.

Resulting national emission factors at detailed level are available on the following public web address: http://www.sinanet.isprambiente.it/it/sia-ispra/fetransp.

Data on fuel consumption of gasoline, diesel, liquefied petroleum gas (LPG), natural gas (CNG) and biofuels are those reported in the national energy balance (MSE, several years); in 2020 consumption data have been updated according to EUROSTAT energy balance, published on the MSE website (http://dgsaie.mise.gov.it/dgerm/ben.asp). Time series of consumptions, by fuel and vehicle categories, are detailed in the NFR.

Lubricants consumption due to 2 stroke engines is estimated and reported in 1A3b. All the other national lubricants consumption, including 4 stoke engines, and relevant emissions are reported in 2D3 category.

3.8.2.1 Exhaust emissions

Exhaust emissions from vehicles subsectors are split between cold and hot emissions; estimates are calculated either on the basis of a combination of total fuel consumption and fuel properties data or on the basis of a combination of drive related emission factors and road traffic data.

The calculation of emissions is based on emission factors calculated for the vehicle models most widely and systematically used, distinguishing between the type of vehicle, fuel, engine size or weight class, standard legislation. The legislative standards introduced become more stringent over the years, ensuring that new vehicles emit much less than the older ones as regards the regulated pollutants.

With reference to four groups of pollutants, the method of calculation of exhaust emissions is different. The methodology implemented is derived from the EMEP/EEA Emission Inventory Guidebook 2019 (EMEP/EEA, 2019).

As regards the first two groups, methods are used leading to high standard detailed emissions data.

The first group includes: CO, NO_X, VOC, CH₄, NMVOC, N₂O, NH₃ and PM. For these pollutants, specific emission factors are applied relating to different engine conditions and urban, rural and highway driving shares.

The second group includes: CO₂, SO₂, Pb, Cd, Cr, Cu, Ni, Se, Zn. The emissions of these pollutants are estimated on the basis of fuel consumption.

For the third group of pollutants, including PAHs and PCDDs and PCDFs, detailed data are not available and then a simplified methodology is applied.

Finally the fourth group includes pollutants (alkanes, alkenes, alkynes, aldehydes, ketones, cycloalkanes and aromatic compounds) obtained as a fraction of the total emissions of NMVOC, assuming that the fraction of residual NMVOC are PAHs.

Because of the availability in Italy of an extensive and accurate database, a detailed methodology is implemented in the model COPERT 5. Total emissions are calculated as the sum of hot emissions, deriving from the engine when it reaches a hot temperature, and cold emissions produced during the heating process. The different methodological approach is justified by the performance of vehicles in the two different phases.

The production of emissions is also closely linked to the driving mode, differentiating for activity data and emission factors, with reference to urban (where it is assumed that almost all cold emissions are produced), rural and highway shares. Several factors contribute to the production of hot emissions such as mileage, speed, type of road, vehicle age, engine capacity and weight. Cold emissions are mainly attributed to urban share, and are attributed only to passenger cars and light duty vehicles. Varying according to the weather conditions and driving behaviour, are related to the specific country.

Emissions of NMVOC, NO_X, CO and PM are calculated on the basis of emission factors expressed in grams per kilometre and road traffic statistics estimated by ISPRA on account of data released from Ministry of Transport, ACI and ANCMA (several years). The emission factors are based on experimental measurements of emissions from in-service vehicles of different types driven under test cycles with different average speeds calculated from the emission functions and speed-coefficients provided by COPERT 5 (EMISIA SA, 2019).

This source provides emission functions and coefficients relating emission factors (in g/km) to average speed for each vehicle type and Euro emission standard derived by fitting experimental measurements to polynomial functions. These functions were then used to calculate emission factor values for each vehicle type and Euro emission standard at each of the average speeds of road and area types.

As regards the speciation of PM into elemental (EC, assumed to be equal to black carbon for road transport) and organic carbon (OC), considering the organic material (OM) as the mass of organic carbon corrected for the hydrogen content of the compounds collected, since the estimates are based on the assumption that low-sulphur fuels are used, when advanced after treatments are used, EC and OM do not add up to 100%, assuming that the remaining fraction consists of ash, nitrates, sulphates, water and ammonium salts (EMEP/EEA 2019).

Emissions of fuel dependent pollutants have been estimated applying a different approach.

Data on consumption of various fuels are derived from official statistics aggregated at national level and then estimated in the detail of vehicle categories, emission regulation and road type in Italy. The resulting error of approximation deriving from the comparison between the calculated value and the statistical value of the total fuel consumption, is corrected by applying a normalisation procedure to the breakdown of fuel consumption by each vehicle type calculated on the basis of the fuel consumption factors added up, with reference to the BEN figures for total fuel consumption in Italy (adjusted for off-road consumption).

The 1990-2018 inventory used fuel consumption factors expressed as grams of fuel per kilometre for each vehicle type and average speed calculated from the emission functions and speed-coefficients provided by the model COPERT 5, version 5.2.2. Emissions of sulphur dioxide and heavy metals are calculated applying specific factors to consumption of gasoline, diesel, liquefied petroleum gas (LPG) and natural gas (CNG), taken from the BEN (MSE, several years (a)), updated since 2017 according to EUROSTAT methodology (http://dgsaie.mise.gov.it/dgerm/ben.asp).

Emissions of SO₂ are based on the sulphur content of the fuel. Values for SO₂ vary annually as the sulphur-content of fuels change and are calculated every year for gasoline and gas oil and officially communicated to the European Commission in the framework of the European Directives on fuel quality; these figures are also published by the refineries industrial association (UP, several years).

Fuel specifications for gasoline, diesel fuel and LPG, derive from *ad hoc* studies about the properties of transportation fuels sold in Italy and whose results are representative and applicable with reference to three different time phases: 1990 - 1999; 2000 - 2011; 2012 - 2018 (Innovhub – Fuel Experimental Station surveys, several years).

As regards natural gas, the national market is characterized by the commercialisation of gases with different chemical composition in variable quantities from one year to the other. Each year the quantities of natural gas imported or produced in Italy are published on the web by the MSE http://dgerm.sviluppoeconomico.gov.it/dgerm/bilanciogas.asp.

In Italy, as regards biofuels used in road transportation, biodiesel and biogasoline, almost all of the commercial gasoline is still substantially an E0, while the distributed diesel reaches up to 5-7% by volume of biodiesel in diesel fuel (this is because Italian producers/refineries have decided since the beginning of the introduction of the obligations on biofuels to focus on biodiesel rather than on ethanol to comply with the European/Italian obligations to introduce bio-fuels on the market). Biogasoline is in particular used in E85 passenger cars category, representing a minimum percentage out of the total consumption, being equal to 0.44% of the total (gasoline including biogasoline) in 2018. According to the Renewable energy Directive (2009/28/EC) the amount of biogasoline reported in the Energy balance is equal to the renewable part of the fuel, calculated as the 37% of the total volume placed on the market. Biodiesel has been tested since 1994 to 1996 before entering in production since 1998.

Emissions of heavy metals are estimated on the basis of data regarding the fuel and lubricant content and the engine wear; as reported in the EMEP/EEA Emission Inventory Guidebook 2016, these apparent fuel metal content factors originate from the work of Winther and Slentø, 2010, and have been reviewed by the TFEIP expert panel in transport and because of the scarce available information, the uncertainty in the estimate of these values is still considered quite high. In COPERT model heavy metals emission factors have been then

updated focusing on the distinction between exhaust and non exhaust share, revising the estimates generally downwards.

Non exhaust emissions of PAHs have also been estimated on the basis of brake and tyres debris-bound values resulting from the EMEP/EEA guidebook 2019.

3.8.2.2 Evaporative emissions

As regards NMVOC, the share of evaporative emissions is provided. These emissions are calculated only for gasoline vehicles: passenger cars, light duty vehicles, mopeds and motorcycles. Depending on temperature and vapour pressure of fuel, evaporative emissions have shown a growth over the years, nevertheless recently the contribution has been reduced by the introduction of control systems such as the canister. The estimation procedure is differentiated according to the processes of diurnal emission, running losses and hot soak emissions (EMEP/EEA, 2019).

3.8.2.3 Emissions from automobile tyre and brake wear

Not exhaust PM emissions from road vehicle tyre and brake wear are estimated. The focus is on the primary particles, deriving directly from tyre and brake wear. The material produced by the effects of wear and attrition between surfaces is subject to evaporation at high temperatures developed by the contact.

Emissions are influenced by, as regards tyres, composition and pressure of tyres, structure and characteristics of vehicles, the peculiarities of the road and, as regards brakes, by the composition of the materials of the components, the position, the configuration systems, and the mechanisms of actuation (EMEP/EEA, 2019).

3.8.2.4 Emissions from automobile road abrasion

Particulate non-exhaust emissions deriving from road surface wear have been introduced in COPERT model, according to the Guidebook methodology (EMEP/EEA, 2019).

Emissions depend on the type of asphalt-based and concrete-based road surfaces, taking into account that composition can vary widely, both from country to country and within countries. The type of tyres used also affect emissions, for instance the wear of the road surface, and the resulting PM concentrations due to resuspension, are considerably high when studded tyres are extensively used during the winter.

The wear of the road surface increases with moisture level, also increasing after salting of the road, since the surface remains wet for longer periods. Other influencing factors are vehicle speed, tyre pressure and air temperature. As a consequence of the decrease of temperature, tyres become less elastic, causing the increase of the road surface wear rates (EMEP/EEA, 2019).

3.8.3 Activity data

The road traffic data used are vehicle-kilometre estimates for the different vehicle types and different road classifications in the national road network. These data have to be further broken down by composition of each vehicle fleet in terms of the fraction of different fuels types powered vehicles on the road and in terms of the fraction of vehicles on the road set by the different emission regulations which applied when the vehicle was first registered. These are related to the age profile of the vehicle fleet.

Basic data derive from different sources. Detailed data on the national fleet composition are found in the yearly report from ACI (ACI, several years), used from 1990 to 2006, except for mopeds for which estimates have been elaborated on the basis of National Association of Cycle-Motorcycle Accessories data on mopeds fleet composition and mileages (ANCMA, several years). ANCMA data have been used up to 2011; since 2012 MIT mopeds fleet data have been used, because starting from 2012, mopeds are estimated to be all registered.

The Ministry of Transport (MIT) provides specific fleet composition data for all vehicle categories from 2007 onwards, starting from 2013 submission. The Ministry of Transport in the national transport yearbook (MIT, several years) reports mileages time series. Furthermore since 2015 MIT supplies information relating the distribution of old gasoline cars over the detailed vehicles categories (PRE ECE; ECE 15/00-01; ECE 15/02; ECE 15/03; ECE 15/04; information obtained from the registration year; data used for the updating of the time series since 2007). MIT data are used relating to: the passenger cars (the categories of "E85" and "Hybrid Gasoline" passenger cars are introduced from 2007 onwards, the detailed "Gasoline < 0.8 l" passenger cars subsector is introduced since 2012 and "Diesel<1.4 l" subsector since 2007 onwards, in addition to the gasoline, diesel, LPG, CNG traditional ones); the diesel and gasoline light commercial vehicles; the breakdown of the heavy duty trucks, buses and coaches fleet according to the different weight classes and fuels (diesel almost exclusively for HDT, a negligible share consists of gasoline vehicles; diesel for coaches; diesel and CNG for buses); the motorcycles fleet in the detail of subsector and legislation standard of both 2-stroke and 4-stroke categories. Fleet values for mopeds are updated according to the revisions of data published by ANCMA; fleet values for diesel buses are updated according to the updating of the data on urban public buses, published on CNIT.

The National Institute of Statistics carries out annually a survey on heavy goods vehicles, including annual mileages (ISTAT, several years).

The National Association of concessionaries of motorways and tunnels produces monthly statistics on highway mileages by light and heavy vehicles (AISCAT, several years).

The National General Confederation of Transport and Logistics (CONFETRA, several years) and the national Central Committee of road transporters (Giordano, 2007) supplied useful information and statistics about heavy goods vehicles fleet composition and mileages.

Fuel consumption data derive basically from the National Energy Balance (MSE, several years (a)); supplementary information is taken from the Oil Bulletin (MSE, several years (b)). As regards biofuels, the consumption has increased in view of the targets to be respected by Italy and set in the framework of the European directive 20-20-20. The trend of biodiesel is explained by the fact that this biofuel has been tested since 1994 to 1996 before entering in production since 1998. The consumption of bioethanol is introduced since 2008, according to data resulting on the BEN.

Emissions are calculated from vehicles of the following types:

- Gasoline passenger cars;
- Diesel passenger cars;
- LPG passenger cars;
- CNG passenger cars;
- Hybrid Gasoline passenger cars;
- Gasoline Light Goods Vehicles (Gross Vehicle Weight (GVW) <= 3.5 tonnes);
- Diesel Light Goods Vehicles (Gross Vehicle Weight (GVW) <= 3.5 tonnes);
- Rigid-axle Heavy Goods Vehicles (GVW > 3.5 tonnes);
- Articulated Heavy Goods Vehicles (GVW > 3.5 tonnes);
- Diesel Buses and coaches;
- CNG Buses:
- Mopeds and motorcycles.

In Table 3.10 the historical series of annual consumption data (Mg) for the different fuel types is reported.

Table 3.10 Annual fuel consumption data (Mg)

Fuel	1990	1995	2000	2005	2010	2015	2016	2017	2018
Gasoline Leaded	12,280,212	10,112,250	4,542,113	-	-	-	-	-	-
Gasoline Unleaded	639,115	7,060,391	12,175,814	13,482,132	9,806,890	7,809,940	7,297,739	7,089,221	7,286,305
Diesel	15,278,022	14,445,441	17,059,010	22,327,864	21,557,266	21,128,587	21,228,198	20,101,587	20,901,623
LPG	1,342,000	1,478,000	1,422,000	1,029,000	1,214,000	1,654,000	1,598,000	1,667,372	1,614,000
CNG	182,651	215,573	293,799	341,876	610,426	787,048	784,310	740,601	746,680
Biodiesel	-	44,491	64,723	200,000	1,468,000	1,292,000	1,141,000	1,164,023	1,377,205
Biogasoline	-	-	-	-	142,106	30,420	37,808	38,455	38,238

Source: ISPRA elaborations on BEN, BP, UP data

The final reports on the physic-chemical characterization of fossil fuels used in Italy, carried out by the Fuel Experimental Station, that is an Italian Institute operating in the framework of the Department of Industry, are used with the aim to improve fuel quality specifications (surveys conducted in 2000 and in 2012 - 2013). Fuel information has also been updated for the entire time series on the basis of the annual reports published by ISPRA about the fuel quality in Italy.

Monitoring of the carbon content of the fuels used in Italy is an ongoing activity at ISPRA (Italian Institute for Environmental Protection and Research). The purpose is to analyse regularly the chemical composition of the used fuels or relevant commercial statistics to estimate the carbon content/emission factor (EF) of the fuels. With reference to the whole inventory, for each primary fuel, a specific procedure has been established.

As regards road transport, Italy fuel specifications values for gasoline, diesel fuel and LPG, derive from Fuel Experimental Station analysis about the properties of transportation fuels sold in Italy and whose results are representative and applicable with reference to three different time phases: 1990 – 1999; 2000 – 2011; 2012 – 2018 (Innovhub – Fuel Experimental Station surveys, several years).

As regards natural gas, the national market is characterized by the commercialisation of gases with different chemical composition in variable quantities from one year to the other. The methodology used to estimate the average EF for natural gas per year is based on the available consumption data, referring to the lower heat value (each year the quantities of natural gas imported or produced in Italy are published on the web by the MSE http://dgerm.sviluppoeconomico.gov.it/dgerm/bilanciogas.asp).

A normalisation procedure is applied to ensure that the breakdown of fuel consumption by each vehicle type calculated on the basis of the fuel consumption factors then added up matches the BEN figures for total fuel consumption in Italy (adjusted for off-road consumption).

In COPERT 5 the automatic energy balance process has been introduced, and it has been applied for this 2020 submission. This simulation is started up having the target to equalize calculated and statistical consumptions, separately for fuel, at national level, with the aim to obtain final estimates the most accurate as possible. Once all data and input parameters have been inserted and all options have been set reflecting the peculiar situation of the Country, emissions and consumptions are calculated by the model in the detail of the vehicle category legislation standard; then the aggregated consumption values so calculated are compared with the input statistical national aggregated values (deriving basically from the National Energy Balance, as described above), with the aim to minimize the deviation.

In the following Tables 3.11, 3.12, 3.13 and 3.14 detailed data on the relevant vehicle mileages in the circulating fleet are reported, subdivided according to the main emission regulations (ISPRA elaborations on ACI, ANCMA and MIT data).

Table 3.11 Passenger Cars technological evolution: circulating fleet calculated as stock data multiplied by actual mileage (%)

1

PRE ECE, pre-1973	0.04	0.03	0.01	0.01	0.002	0.002	0.002	0.002	0.002
ECE 15/00-01, 1973-1978	0.10	0.04	0.01	0.005	0.003	0.003	0.003	0.003	0.003
ECE 15/02-03, 1978-1984	0.30	0.15	0.03	0.01	0.01	0.007	0.01	0.01	0.01
ECE 15/04, 1985-1992	0.55	0.55	0.28	0.10	0.04	0.03	0.03	0.02	0.02
PC Euro 1 - 91/441/EEC, from 1/1/93	0.001	0.24	0.27	0.17	0.05	0.02	0.02	0.02	0.02
PC Euro 2 - 94/12/EEC, from 1/1/97	-	-	0.39	0.32	0.22	0.12	0.11	0.10	0.08
PC Euro 3 - 98/69/EC Stage2000, from 1/1/2001	-	-	-	0.31	0.19	0.13	0.12	0.11	0.10
PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006	-	-	-	0.08	0.44	0.37	0.35	0.32	0.30
PC Euro 5 - EC 715/2007, from 1/1/2011	-	-	-	-	0.04	0.25	0.24	0.23	0.22
PC Euro 6 - EC 715/2007, from 9/1/2015	-	-	-	-	-	0.06	0.13	0.19	0.25
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
a. Gasoline cars technological evolution									
	1990	1995	2000	2005	2010	2015	2016	2017	2018
Conventional, pre-1993	1.00	0.92	0.36	0.06	0.01	0.005	0.004	0.003	0.003
PC Euro 1 - 91/441/EEC, from 1/1/93	-	0.08	0.10	0.03	0.01	0.003	0.002	0.002	0.001
PC Euro 2 - 94/12/EEC, from 1/1/97	_	-	0.54	0.22	0.05	0.02	0.02	0.02	0.01
PC Euro 3 - 98/69/EC Stage2000, from 1/1/2001	_	_	-	0.56	0.31	0.16	0.14	0.11	0.10
PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006	_	_	_	0.12	0.55	0.41	0.38	0.37	0.30
PC Euro 5 - EC 715/2007, from 1/1/2011	_	_	_	-	0.07	0.35	0.31	0.30	0.30
PC Euro 6 - EC 715/2007, from 9/1/2015	_	_	_	_	0.0001	0.05	0.14	0.20	0.29
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
b. Diesel cars technological evolution									
	1000	1005	2000	2005	2010	2015	2016	2017	2010
	1990	1995	2000	2005	2010	2015	2016	2017	2018
Conventional, pre-1993	1.00	0.90	0.71	0.47	0.04	0.01	0.01	0.01	0.01
PC Euro 1 - 91/441/EEC, from 1/1/93	-	0.10	0.20	0.26	0.03	0.01	0.01	0.01	0.01
PC Euro 2 - 94/12/EEC, from 1/1/97	-	-	0.09	0.19	0.08	0.03	0.03	0.02	0.02
PC Euro 3 - 98/69/EC Stage2000, from 1/1/2001	-	-	-	0.06	0.08	0.05	0.04	0.04	0.03
PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006	-	-	-	0.01	0.75	0.45	0.42	0.38	0.35
PC Euro 5 - EC 715/2007, from 1/1/2011	-	-	-	-	0.03	0.36	0.34	0.32	0.30
PC Euro 6 - EC 715/2007, from 9/1/2015									
m · 1	-	-	-	-	-	0.08	0.15	0.23	0.29
Total c. Lng cars technological evolution	1.00	1.00	1.00	1.00	1.00			0.23 1.00	0.29 1.00
Total c. Lpg cars technological evolution	1.00	1.00				0.08	0.15		
c. Lpg cars technological evolution	1990	1995	1.00 2000	1.00 2005	1.00 2010	0.08 1.00 2015	0.15 1.00 2016	1.00 2017	2018
			1.00	1.00	1.00 2010 0.91	0.08 1.00 2015 0.58	0.15 1.00 2016 0.54	1.00 2017 0.51	1.00 2018 0.48
c. Lpg cars technological evolution	1990	1995	1.00 2000	1.00 2005	1.00 2010	0.08 1.00 2015	0.15 1.00 2016	1.00 2017	2018
c. Lpg cars technological evolution PC from Conventional to Euro 4	1990 1.00	1995 1.00	1.00 2000 1.00	1.00 2005 1.00	1.00 2010 0.91	0.08 1.00 2015 0.58	0.15 1.00 2016 0.54	1.00 2017 0.51	1.00 2018 0.48
c. Lpg cars technological evolution PC from Conventional to Euro 4 PC Euro 5 - EC 715/2007, from 1/1/2011	1990 1.00	1995 1.00	1.00 2000 1.00	1.00 2005 1.00	1.00 2010 0.91 0.09	0.08 1.00 2015 0.58 0.32	0.15 1.00 2016 0.54 0.31	1.00 2017 0.51 0.31	1.00 2018 0.48 0.30
c. Lpg cars technological evolution PC from Conventional to Euro 4 PC Euro 5 - EC 715/2007, from 1/1/2011 PC Euro 6 - EC 715/2007, from 9/1/2015	1990 1.00 -	1995 1.00 -	1.00 2000 1.00 -	1.00 2005 1.00	1.00 2010 0.91 0.09	0.08 1.00 2015 0.58 0.32 0.10	0.15 1.00 2016 0.54 0.31 0.15	1.00 2017 0.51 0.31 0.18	1.00 2018 0.48 0.30 0.22
c. Lpg cars technological evolution PC from Conventional to Euro 4 PC Euro 5 - EC 715/2007, from 1/1/2011 PC Euro 6 - EC 715/2007, from 9/1/2015 Total	1990 1.00 -	1995 1.00 - - 1.00	1.00 2000 1.00 - 1.00	2005 1.00 - - 1.00	2010 0.91 0.09 - 1.00	0.08 1.00 2015 0.58 0.32 0.10 1.00	0.15 1.00 2016 0.54 0.31 0.15 1.00	1.00 2017 0.51 0.31 0.18 1.00	1.00 2018 0.48 0.30 0.22 1.00
c. Lpg cars technological evolution PC from Conventional to Euro 4 PC Euro 5 - EC 715/2007, from 1/1/2011 PC Euro 6 - EC 715/2007, from 9/1/2015 Total d. CNG cars technological evolution	1990 1.00 -	1995 1.00 - - 1.00	2000 1.00 - 1.00 2008	2005 1.00 - - 1.00	2010 0.91 0.09 - 1.00	0.08 1.00 2015 0.58 0.32 0.10 1.00	0.15 1.00 2016 0.54 0.31 0.15 1.00	2017 0.51 0.31 0.18 1.00	1.00 2018 0.48 0.30 0.22 1.00
c. Lpg cars technological evolution PC from Conventional to Euro 4 PC Euro 5 - EC 715/2007, from 1/1/2011 PC Euro 6 - EC 715/2007, from 9/1/2015 Total d. CNG cars technological evolution PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006	1990 1.00 -	1995 1.00 - - 1.00	1.00 2000 1.00 - 1.00	1.00 2005 1.00 1.00 2009 0.65	2010 0.91 0.09 - 1.00	0.08 1.00 2015 0.58 0.32 0.10 1.00 2015 0.22	0.15 1.00 2016 0.54 0.31 0.15 1.00 2016 0.07	2017 0.51 0.31 0.18 1.00 2017 0.04	1.00 2018 0.48 0.30 0.22 1.00 2018 0.03
c. Lpg cars technological evolution PC from Conventional to Euro 4 PC Euro 5 - EC 715/2007, from 1/1/2011 PC Euro 6 - EC 715/2007, from 9/1/2015 Total d. CNG cars technological evolution PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006 PC Euro 5 - EC 715/2007, from 1/1/2011	1990 1.00 -	1995 1.00 - - 1.00	1.00 2000 1.00 - 1.00 2008 1.00	2005 1.00 - - 1.00	2010 0.91 0.09 - 1.00	0.08 1.00 2015 0.58 0.32 0.10 1.00 2015 0.22 0.61	0.15 1.00 2016 0.54 0.31 0.15 1.00 2016 0.07 0.42	1.00 2017 0.51 0.31 0.18 1.00 2017 0.04 0.27	1.00 2018 0.48 0.30 0.22 1.00 2018 0.03 0.18
c. Lpg cars technological evolution PC from Conventional to Euro 4 PC Euro 5 - EC 715/2007, from 1/1/2011 PC Euro 6 - EC 715/2007, from 9/1/2015 Total d. CNG cars technological evolution PC Euro 4 - 98/69/EC Stage2005, from 1/1/2006	1990 1.00 -	1995 1.00 - - 1.00	1.00 2000 1.00 - 1.00 2008 1.00 -	1.00 2005 1.00 1.00 2009 0.65	2010 0.91 0.09 - 1.00 2010 0.54 0.46	0.08 1.00 2015 0.58 0.32 0.10 1.00 2015 0.22	0.15 1.00 2016 0.54 0.31 0.15 1.00 2016 0.07	2017 0.51 0.31 0.18 1.00 2017 0.04	1.00 2018 0.48 0.30 0.22 1.00 2018 0.03

e. Hybrid Gasoline cars technological evolution (from 2007 onwards)

Source: ISPRA elaborations on MIT and ACI data

Table 3.12 Light Duty Vehicles technological evolution: circulating fleet calculated as stock data multiplied by actual mileage (%)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
Conventional, pre 10/1/94	1.00	0.93	0.63	0.35	0.08	0.06	0.06	0.06	0.06

	1990	1995	2000	2005	2010	2015	2016	2017	2018
LD Euro 1 - 93/59/EEC, from 10/1/94	-	0.07	0.22	0.17	0.11	0.04	0.04	0.04	0.03
LD Euro 2 - 96/69/EEC, from 10/1/98	-	-	0.15	0.15	0.30	0.16	0.15	0.15	0.13
LD Euro 3 - 98/69/EC Stage2000, from 1/1/2002	-	-	-	0.31	0.26	0.19	0.19	0.18	0.15
LD Euro 4 - 98/69/EC Stage2005, from 1/1/2007	-	-	-	0.01	0.25	0.32	0.32	0.31	0.28
LD Euro 5 - 2008 Standards 715/2007/EC, from 1/1/2012	-	-	-	-	0.00	0.22	0.20	0.17	0.19
LD Euro 6	-	-	-	-	-	0.02	0.05	0.09	0.17
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
a. Gasoline Light Duty Vehicles technological evolution									
	1990	1995	2000	2005	2010	2015	2016	2017	2018
Conventional, pre 10/1/94	1.00	0.92	0.55	0.23	0.08	0.02	0.02	0.02	0.01
LD Euro 1 - 93/59/EEC, from 10/1/94	-	0.08	0.21	0.11	0.06	0.02	0.02	0.02	0.01
LD Euro 2 - 96/69/EEC, from 10/1/98	-	-	0.23	0.20	0.20	0.07	0.06	0.05	0.04
LD Euro 3 - 98/69/EC Stage2000, from 1/1/2002	-	-	-	0.45	0.32	0.21	0.18	0.17	0.19
LD Euro 4 - 98/69/EC Stage2005, from 1/1/2007	-	-	-	0.02	0.33	0.33	0.29	0.25	0.28
LD Euro 5 - 2008 Standards 715/2007/EC, from 1/1/2012	-	-	-	-	0.01	0.34	0.36	0.33	0.26
LD Euro 6	-	-	-	-	0.00	0.01	0.07	0.17	0.21
1									
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Source: ISPRA elaborations on MIT and ACI data

Table 3.13 Heavy Duty Trucks and Buses technological evolution: circulating fleet calculated as stock data multiplied by actual mileage (%)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
Conventional, pre 10/1/93	1.00	0.90	0.67	0.40	0.20	0.02	0.02	0.02	0.02
HD Euro I - 91/542/EEC Stage I, from 10/1/93	-	0.10	0.10	0.06	0.04	0.01	0.01	0.01	0.01
HD Euro II - 91/542/EEC Stage II, from 10/1/96	-	-	0.22	0.27	0.15	0.08	0.07	0.06	0.06
HD Euro III - 2000 Standards, 99/96/EC, from 10/1/2001	-	-	-	0.27	0.36	0.34	0.31	0.28	0.25
HD Euro IV - 2005 Standards, 99/96/EC, from 10/1/2006	-	-	-	-	0.07	0.10	0.09	0.08	0.08
HD Euro V - 2008 Standards, 99/96/EC, from 10/1/2009	-	-	-	-	0.18	0.38	0.37	0.36	0.34
HD Euro VI – EC 595/2009, from 12/31/2013	-	-	-	-	-	0.07	0.13	0.19	0.25
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
a. Heavy Duty Trucks technological evolution									
	1990	1995	2000	2005	2010	2015	2016	2017	2018
Conventional, pre 10/1/93	1.00	0.93	0.65	0.34	0.13	0.01	0.01	0.01	0.01
HD Euro I - 91/542/EEC Stage I, from 10/1/93	_	0.07	0.07	0.08	0.04	0.01	0.01	0.01	0.01
HD Euro II - 91/542/EEC Stage II, from 10/1/96	-	-	0.28	0.32	0.27	0.14	0.13	0.12	0.10
HD Euro III - 2000 Standards, 99/96/EC, from 10/1/2001	-	-	-	0.26	0.33	0.38	0.35	0.33	0.30
HD Euro IV - 2005 Standards, 99/96/EC, from 10/1/2006	_	_	-	-	0.12	0.13	0.12	0.11	0.11
HD Euro V - 2008 Standards, 99/96/EC, from 10/1/2009	-	-	-	-	0.11	0.28	0.28	0.27	0.26
HD Euro VI – EC 595/2009, from 12/31/2013	-	-	-	-	-	0.05	0.10	0.15	0.21
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
b. Diesel Buses technological evolution									
	1990	1995	2000	2005	2010	2015	2016	2017	2018
Urban CNG Buses Euro I - 91/542/EEC Stage I, from 10/1/93	1.00	1.00	0.11	0.01	0.003	0.003	0.003	0.002	0.002
Urban CNG Buses Euro II - 91/542/EEC Stage II, from 10/1/96	-	-	0.89	0.20	0.10	0.05	0.04	0.04	0.03
Urban CNG Buses Euro III - 2000 Standards, 99/96/EC, from 10/1/2001	-	-	-	0.79	0.09	0.07	0.06	0.05	0.05
Urban CNG Buses Euro IV - 2005 Standards, 99/96/EC, from 10/1/2006; Euro V - 2008 Standards, 99/96/EC, from 10/1/2009; EEV (Enhanced environmentally friendly vehicle; ref. 2001/27/EC and 1999/96/EC line C, optional limit emission values); Urban CNG Buses Euro VI – EC									
595/2009, from 12/31/2013	-	-	-	-	0.81	0.88	0.90	0.91	0.92
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
c. CNG Buses technological evolution									

Source: ISPRA elaborations on MIT and ACI data

Table 3.14 Mopeds and motorcycles technological evolution: circulating fleet calculated as stock data multiplied by actual mileage (%)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
Mopeds and motorcycles - Conventional	1.00	1.00	0.86	0.45	0.21	0.10	0.09	0.08	0.10
Mopeds and motorcycles - Euro 1	-	-	0.14	0.28	0.17	0.11	0.10	0.09	0.10
Mopeds and motorcycles - Euro 2	-	-	-	0.22	0.35	0.38	0.38	0.39	0.31
Mopeds and motorcycles - Euro 3	-	-	-	0.04	0.27	0.42	0.42	0.40	0.40
Mopeds and motorcycles - Euro 4	-	-	-	-	-	-	0.01	0.04	0.10
Mopeds and motorcycles - Euro 5	-	-	-	-	-	-	0.00	0.00	0.00
Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Source: ISPRA elaborations on ANCMA, ACI and MIT data

Average emission factors are calculated for average speeds by three driving modes (urban, rural and motorway) combined with the vehicle kilometres travelled and vehicle categories.

ISPRA estimates total annual vehicle kilometres for the road network in Italy by vehicle type, see Table 3.15, based on data from various sources:

- Ministry of Transport (MIT, several years) for rural roads and on other motorways; the latter estimates are based on traffic counts from the rotating census and core census surveys of ANAS (management authority for national road and motorway network);
- highway industrial association for fee-motorway (AISCAT, several years);
- local authorities for built-up areas (urban).

 Table 3.15
 Evolution of fleet consistency and mileage

	1990	1995	2000	2005	2010	2015	2016	2017	2018
All passenger vehicles (including moto), total mileage (10 ⁹ veh-km/y)	350	412	456	457	438	449	447	452	442
Car fleet (10 ⁶)	27	30	33	35	38	39	39	40	41
Moto, total mileage (10° veh-km/y)	30	41	42	43	36	34	32	32	26
Moto fleet (10 ⁶)	7	7	9	10	10	10	10	10	10
Goods transport, total mileage (10° veh-km/y)	69	76	83	100	89	61	62	55	67
Truck fleet (10 ⁶), including LDV	2	3	3	4	5	5	5	5	5

Source: ISPRA elaborations

Notes: The passenger vehicles include passenger cars, buses and moto; the moto fleet includes mopeds and motorcycles; in the goods transport light commercial vehicles and heavy duty trucks are included.

3.8.4 Time series and key categories

The analysis of time series on transport data shows a trend that is the result of the general growth in mobility demand and consumptions, on one side, and of the introduction of advanced technologies limiting emissions in modern vehicles and of the economic crisis in recent years, on the other side.

More in details, passenger cars and light duty vehicles emissions trends are driven by a gradual decrease in the last years of gasoline fuel consumption balanced by an increase of diesel fuel which is the main driver for NO_X and PM emissions. At pollutant level emission trends are driven not only by fuel but also by changes in technologies which are reflected in the COPERT model by the annual vehicle fleet. Due to the penetration of new vehicles with more stringent pollutant limits, some pollutant emissions decreased faster than other. An important role has been played also by the distribution between diesel and gasoline fuel consumptions. In the last years an increase of diesel fuelled vehicles and a decrease of gasoline ones have been registered and diesel fuel new technologies resulted in a slower decrease of NO_X emission than expected.

Regarding heavy duty vehicles emissions trends are explained by the variations estimated in mileages time series data correlated to the variations registered in fuel consumptions; annual variation are explained by the general trend of national economic growth and in particular commercial and industrial activities.

Emissions trends regarding mopeds and motorcycles are explained by the variations estimated in mileages time series data correlated to the variations registered in gasoline consumptions. The annual penetration of new technologies explains annual emission trends. A discontinuity in the database of motorcycles occur in 2005 when more detailed information is available in particular the number of EURO 2 and EURO 3 motorcycles and the number distributed by EURO of two stroke motorcycles not available till 2004.

In Table 3.16 the list of key categories by pollutant identified for road transport in 2018, 1990 and at trend assessment is reported.

Table 3.16 List of key categories for pollutant in the road transport in 2018, 1990 and in the trend

	Key categ	gories in 20	18	Key cat	Key categories in 1990			Key categories in trend					
SO_X				1A3bi			1A3bi						
NO_X	1A3bi	1A3bii	1A3biii	1A3bi	1A3bii	1A3biii	1A3bi	1A3bii	1A3biii				
NMVOC	1A3bi	1A3biv	1A3bv	1A3bi	1A3biv	1A3bv	1A3bi	1A3biv					
NH_3							1A3bi						
CO	1A3bi	1A3biv		1A3bi	1A3biv		1A3bi						
PM_{10}	1 A 3 bi	1A3bvi	1A3bvii	1A3bi	1A3bii	1A3biii 1A3bvi	1A3bi	1A3bii	1A3biii	1A3bvi			
PM _{2.5}	1A3bi	1A3bvi		1A3bi	1A3bii	1A3biii	1A3bi	1A3bii	1A3biii				
BC	1A3bi	1A3bii	1A3biii	1A3bi	1A3bii	1A3biii	1A3bi	1A3bii	1A3biii				
Pb				1A3bi	1A3biv		1A3bi						
Cd	1A3bi						1A3bi						

Source: ISPRA elaborations

In 2018 key categories are identified for the following pollutants: nitrogen oxides, non methane volatile organic compounds, carbon monoxide, particulate matter with diameter less than 10 μ m, particulate matter with diameter less than 2.5 μ m, black carbon and cadmium.

Nitrogen oxides emissions show a decrease since 1990 of -70.8%. Emissions are mainly due to diesel vehicles. The decrease observed since 1990 in emissions relates to all categories except for diesel passenger cars, CNG buses.

In 2018, emissions of nitrogen oxides (Table 3.17) from passenger cars, light-duty vehicles and heavy-duty trucks including buses are key categories. The same categories are identified as key categories in 1990 and in trend.

Table 3.17 *Time series of nitrogen oxides emissions in road transport (Gg)*

Source categories for NFR Subsector 1.A.3.b	1990	1995	2000	2005	2010	2015	2016	2017	2018	
Gg										
1.A.3.b.i Passenger cars	591.13	628.78	389.39	242.46	169.95	172.71	166.60	161.47	155.02	
1.A.3.b.ii Light-duty vehicles	63.77	72.53	73.07	72.39	60.03	41.02	43.06	39.62	45.78	
1.A.3.b.iii Heavy-duty vehicles including buses	336.35	331.94	305.63	307.43	193.74	114.62	104.65	83.92	85.64	
1.A.3.b.iv Mopeds and motorcycles	5.38	6.98	7.59	7.23	5.86	5.60	5.30	5.23	4.37	
Total emissions	996.64	1,040.23	775.68	629.52	429.58	333.96	319.61	290.24	290.82	

Source: ISPRA elaborations

As regards non methane volatile organic compounds, emissions from passenger cars, mopeds and motorcycles and gasoline evaporation are key categories in 2018 and 1990; emissions from passenger cars, mopeds and motorcycles are key categories in trend.

Despite the decline of about -85.3% since 1990 of emissions of non methane volatile organic compounds from this category, road transport (Table 3.18) is the fourth source at national level after the use of solvents, the not industrial combustion and agriculture; this trend is due to the combined effects of technological improvements that limit VOCs from tail pipe and evaporative emissions (for cars) and the expansion of two-wheelers fleet. In Italy there is in fact a remarkable fleet of motorbikes and mopeds (about 10 million vehicles in 2018) that uses gasoline and it is increased of about 52.9% since 1990 (this fleet not completely complies with strict VOC emissions controls).

Table 3.18 Time series of non methane volatile organic compounds emissions in road transport (Gg)

Source categories for NFR Subsector 1.A.3.b	1990	1995	2000	2005	2010	2015	2016	2017	2018		
Gg											
1.A.3.b.i Passenger cars	430.46	467.24	261.66	123.03	49.52	29.66	26.12	26.43	23.37		
1.A.3.b.ii Light-duty vehicles	15.51	18.41	13.86	11.01	6.42	2.13	1.91	1.58	1.90		
1.A.3.b.iii Heavy-duty vehicles including buses	24.77	23.84	19.45	16.75	8.48	3.50	3.21	2.54	2.59		
1.A.3.b.iv Mopeds and motorcycles	149.09	214.28	192.27	163.70	82.23	48.85	45.65	44.35	33.10		
1.A.3.b.v Gasoline evaporation	119.23	119.12	88.30	56.78	46.64	47.43	46.49	48.56	47.94		
Total emissions	739.07	842.88	575.53	371.28	193.29	131.57	123.38	123.45	108.90		

Source: ISPRA elaborations

Carbon monoxide emissions from passenger cars and mopeds and motorcycles are key categories in 2018 and 1990; passenger cars are also key category in trend. The time series of CO emissions is reported in Table 3.19.

Table 3.19 Time series of carbon monoxide emissions in road transport (Gg)

Source categories for NFR Subsector 1.A.3.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
Gg									
1.A.3.b.i Passenger cars	4,124.46	4,151.84	2,139.08	1,082.07	489.04	301.00	269.92	294.67	250.77
1.A.3.b.ii Light-duty vehicles	180.15	212.51	142.82	97.03	49.63	18.30	16.34	14.18	16.20
1.A.3.b.iii Heavy-duty vehicles including buses	79.69	78.25	68.81	70.44	48.48	33.19	30.62	25.12	25.83
1.A.3.b.iv Mopeds and motorcycles	490.71	663.79	620.89	458.02	229.88	158.03	144.96	138.46	120.90
Total emissions	4,875.00	5,106.39	2,971.60	1,707.57	817.03	510.53	461.84	472.43	413.70

Source: ISPRA elaborations

A strong contribution to total emissions is given by gasoline vehicles (about 79.0% in 2018, although since 1990 a decrease of about -92.8% is observed); since 1990 to 2018 a general decrease, of about -91.5%, is observed.

Emissions of PM10 (Table 3.20) deriving from passenger cars, light-duty vehicles, heavy-duty vehicles including buses, road vehicle tyre and brake wear are key categories in 1990; emissions from passenger cars, road vehicle tyre and brake wear and emissions from road surface wear are key categories in 2018; emissions from passenger cars, light-duty vehicles, heavy-duty vehicles including buses and from road vehicle tyre and brake wear are key category in trend.

As regards PM2.5 (Table 3.21), emissions from passenger cars, light-duty vehicles, heavy-duty vehicles including buses are key categories in 1990 and in trend; while emissions from passenger cars and road vehicle tyre and brake wear are key categories in 2018.

Table 3.20 Time series of particulate matter with diameter less than 10 μ m emissions in road transport (Gg)

Source categories for NFR Subsector 1.A.3.b	1990	1995	2000	2005	2010	2015	2016	2017	2018		
Gg											
1.A.3.b.i Passenger cars	19.37	14.21	12.47	10.04	7.86	5.93	5.43	5.06	4.14		
1.A.3.b.ii Light-duty vehicles 1.A.3.b.iii Heavy-duty vehicles including	10.59	11.73	10.50	8.56	5.45	1.72	1.55	1.27	1.57		
buses	13.23	13.00	10.51	9.10	4.80	2.24	2.04	1.63	1.64		
1.A.3.b.iv Mopeds and motorcycles 1 A 3 b vi Road Transport:, Automobile tyre	3.06	4.43	4.02	3.41	1.57	0.85	0.78	0.74	0.60		
and brake wear 1.A.3.b.vii Road transport: Automobile road	7.42	8.47	9.20	9.86	9.38	9.32	8.69	7.85	8.65		
abrasion	4.19	4.68	4.99	5.30	4.83	4.50	4.49	4.38	4.38		
Total emissions	57.85	56.52	51.70	46.28	33.89	24.56	22.97	20.91	20.98		

Source: ISPRA elaborations

Table 3.21 Time series of particulate matter with diameter less than 2.5 µm emissions in road transport (Gg)

Source categories for NFR Subsector 1.A.3.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
			Gg						
1.A.3.b.i Passenger cars	19.37	14.21	12.47	10.04	7.86	5.93	5.43	5.06	4.14
1.A.3.b.ii Light-duty vehicles	10.59	11.73	10.50	8.56	5.45	1.72	1.55	1.27	1.57
1.A.3.b.iii Heavy-duty vehicles including buses	13.23	13.00	10.51	9.10	4.80	2.24	2.04	1.63	1.64
1.A.3.b.iv Mopeds and motorcycles 1 A 3 b vi Road Transport: Automobile tyre and	3.06	4.43	4.02	3.41	1.57	0.85	0.78	0.74	0.60
brake wear 1.A.3.b.vii Road transport: Automobile road	4.05	4.63	5.04	5.39	5.12	5.06	4.76	4.35	4.76
abrasion	2.26	2.53	2.69	2.86	2.61	2.43	2.42	2.36	2.36
Total emissions	52.56	50.53	45.24	39.37	27.41	18.23	16.98	15.41	15.07

Source: ISPRA elaborations

Emissions of particulate matter with diameter less than $10\mu m$ and less than $2.5\mu m$ show a decreasing trend since 1990 respectively of about -63.7% and -71.3%; despite the decrease, diesel vehicles (passenger cars, light duty vehicles and heavy duty trucks including buses) are mainly responsible for road transport emissions giving a strong contribution to total emissions, in 2018 about 77.1% and 80.2% out of the total for PM10 and PM2.5 respectively.

Emissions of black carbon are reported in Table 3.22. Emissions from passenger cars, light-duty vehicles and heavy-duty trucks including buses are key categories in 1990, 2018 and in trend.

The emissions trend is generally decreasing (-76.0% since 1990). The main contribution to total emissions is given by diesel vehicles, in 2018 equal to 97.6% out of the total. Despite of the decrease, road transport is

the second source of emissions (the main source is non industrial combustion) at national level in 2018 (30.4%).

Table 3.22 Time series of black carbon emissions in road transport (Gg)

Source categories for NFR Subsector 1.A.3.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
		G_{i}	g						
1.A.3.b.i Passenger cars	10.44	7.65	7.57	7.44	6.37	4.70	4.29	3.98	3.17
1.A.3.b.ii Light-duty vehicles	5.82	6.49	6.22	5.78	4.07	1.36	1.22	1.00	1.26
1.A.3.b.iii Heavy-duty vehicles including buses	6.61	6.64	5.59	5.18	2.93	1.53	1.39	1.11	1.11
1.A.3.b.iv Mopeds and motorcycles	0.60	0.87	0.78	0.60	0.28	0.15	0.13	0.13	0.10
Total emissions	23.47	21.64	20.16	19.01	13.64	7.73	7.03	6.21	5.64

Source: ISPRA elaborations

Emissions of cadmium are reported in Table 3.23. Cadmium emissions from passenger cars are key categories in 2018 and in trend.

Emissions show an increase since 1990 of about 4.8%, representing in 2018 the 7.7% of the national total. In 2018 most of the emissions derive from passenger cars (66.0%); non exhaust emissions from automobile tyre and brake wear are equal to 12.9% of the total.

Table 3.23 Time series of Cadmium emissions in road transport (Gg)

Source categories for NFR Subsector 1.A.3.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
		Mg							
1.A.3.b.i Passenger cars	0.21	0.24	0.27	0.26	0.26	0.27	0.27	0.27	0.27
1.A.3.b.ii Light-duty vehicles	0.02	0.03	0.03	0.04	0.04	0.03	0.03	0.02	0.03
1.A.3.b.iii Heavy-duty vehicles including buses	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02
1.A.3.b.iv Mopeds and motorcycles 1.A.3.b.vi Road transport: Automobile tyre and	0.08	0.11	0.11	0.11	0.08	0.06	0.05	0.05	0.04
brake wear	0.05	0.05	0.06	0.06	0.06	0.06	0.05	0.05	0.05
Total emissions	0.39	0.47	0.50	0.51	0.46	0.43	0.42	0.42	0.41

Emissions of SO_X , NH_3 and Pb (Table 3.24) are not key categories in 2018, despite Pb emissions from passenger cars and from mopeds and motorcycles are key categories in 1990 and Pb emissions from passenger cars are key categories in trend; emissions of SO_X from passenger cars are key categories in 1990 and in trend; emissions of NH_3 from passenger cars are key categories in trend. Emissions of these pollutants deriving from road transport are irrelevant in 2018, compared to other sectors. Emissions of SO_X and Pb show strong decreases (since 2002, Pb resulting emissions are almost completely not exhaust), due to limits on fuels properties imposed by legislation. SO_X emissions decrease by -99.7%, representing 0.4% of the total in 2018. Total Pb emissions decrease of -99.7%. Emissions of NH_3 , despite the strong increase since 1990, in 2018 account for just 1.6% out of the total.

Table 3.24 Time series of sulphur oxides, ammonia and lead emissions in road transport

SO_{X} , $NH_{3}, Pb\ Total\ Emissions\ for\ NFR\ Subsector\ 1.A.3.b$	1990	1995	2000	2005	2010	2015	2016	2017	2018
$SO_{X}\left(Gg ight)$	129.29	71.60	11.92	2.21	0.43	0.38	0.41	0.41	0.41

SO _X , NH ₃ , Pb Total Emissions for NFR Subsector 1.A.3.b	1990	1995	2000	2005	2010	2015	2016	2017	2018
NH ₃ (Gg)	0.76	5.29	20.52	15.60	10.01	6.49	6.06	5.74	5.89
Pb (Mg)	3,781.80	1,617.1 5	689.59	12.70	12.09	12.27	11.07	9.61	10.93

Source: ISPRA elaborations

3.8.5 **QA/QC** and Uncertainty

Data used for estimating emissions from the road transport sector, derive from different sources, including official statistics providers and industrial associations.

A specific procedure undertaken for improving the inventory in the sector regards the establishment of a national expert panel in road transport which involves, on a voluntary basis, different institutions, local agencies and industrial associations cooperating for improving activity data and emission factors accuracy. In this group emission estimates are presented annually and new methodologies are shared and discussed. Reports and data of the meetings can be found at the following address:

http://groupware.sinanet.isprambiente.it/expert_panel/library.

Besides, over time recalculations of time series estimates have been discussed with national experts in the framework of an *ad hoc* working group on air emissions inventories. The group is chaired by ISPRA and includes participants from the local authorities responsible for the preparation of local inventories, sectoral experts, the Ministry of Environment, Land and Sea, and air quality model experts. Recalculations are comparable with those resulting from application of the model at local level. Top-down and bottom-up approaches have been compared with the aim at identifying the major problems and future possible improvements in the methodology to be addressed.

A Montecarlo analysis has been carried out by EMISIA on behalf of the Joint Research Centre (Kouridis et al., 2010) in the framework of the study "Uncertainty estimates and guidance for road transport emission calculations" for 2005 emissions. The study shows an uncertainty assessment, at Italian level, for road transport emissions on the basis of 2005 input parameters of the COPERT 4 model (v. 7.0).

3.8.6 **Recalculation**

The annual update of the emissions time series from road transport implies a periodic review process.

In 2020 submission the historical series has been revised mainly as a result of applying the planned improvement regarding a general review of mileages with reference to a better distribution between the vehicles categories based on national statistics, subject to the total fuel balance between the sales of national fuels and the estimated total consumptions, separately for fuel.

In particular a general increase of passenger cars mileages has been obtained, respect to previous submission values, on the basis of national statistics such as: passengers-kilometer historical series reported in the yearly transport statistics published by the Ministry of Transport; statistics about national freight transport elaborated by the National Institute of Statistics; statistics about highway traffic published by AISCAT.

Urban, rural, highway shares and speed values have also been revised on the basis of a better distribution between vehicle categories, also with reference to the distinction between "peak" and "off-peak" urban modalities, previously not differentiated.

The historical series of fleet data has been updated detailing the category Euro 6 standard in the two groups "Euro 6 up to 2016" and "Euro 6 2017-2019" for passenger cars, and "Euro 6 up to 2017" and "Euro 6 2018-2020" for light duty vehicles.

Compressed Natural Gas passenger cars, from Conventional to Euro 3 standards, previously estimated apart, are now included in the estimation model Copert: weighted emission factors have been elaborated for the class from Conventional to Euro 4 standards, on the basis of Euro 4 Copert emission factors and country

specific emission factors from Conventional to Euro 3 (Copert CNG passenger cars fleet classification ranges indeed from Euro 4 to Euro 6 standards).

For 2020 submission, country specific hot emission factors for Euro 6 Small and Medium LPG passenger cars have been applied for: CO, NOX, VOC, PM Exhaust, FC, CH4, NH3, N2O, deriving from tests on five Euro 6 b/c bifuel LPG passenger cars (Innovhub, 2018).

As regards fuels, a correction has been applied, respect to previous submission, to the implementation of Copert blend share procedure with reference to the bio and fossil share of consumed fuels in the different years.

A revision has been applied regarding biodiesel data series since 2001, considering as input data directly the biodiesel consumption value in tons resulting from the National Energy Balance and from Eurostat data, instead of the previous estimate considering biodiesel in equivalent tons to diesel; then the Eurostat net calorific values are applied to insert consumption as input data in the Copert model.

Biodiesel emissions from the fossil component of the fuel have been calculated on the basis of the percentage 5.5% indicated in the IPCC Working Group I "Note on fossil carbon content in biofuels" According to the analysis, "the fossil part of the FAME ranges from 5.3 to 5.5%" (Ioannis Sempos, 10 October 2018).

Furthermore, in addition to previous submission, PAHs non exhaust emissions from brake and tyres have been estimated (Emep/Eea air pollutant emission inventory guidebook 2019).

3.8.7 Planned improvements

Improvements for the next submission will be connected to the possible new availability of data and information regarding activity data, calculation factors and parameters, new developments of the methodology and the update of the software.

3.9 RAILWAYS (NFR SUBSECTOR 1.A.3.C)

The electricity used by the railways for electric traction is supplied from the public distribution system, so the emissions arising from its generation are reported under category 1.A.1.a Public Electricity.

Emissions from diesel trains are reported under the IPCC category 1.A.3.c Railways. Estimates are based on the gasoil consumption for railways reported in BEN (MSE, several years [a], updated since 2018 according to EUROSTAT methodology (http://dgsaie.mise.gov.it/dgerm/ben.asp), and on the methodology Tier1, and emission factors from the EMEP/EEA Emission Inventory Guidebook 2016 (EMEP/EEA, 2016).

Fuel consumption data are collected by the Ministry of Economic Development, responsible of the energy balance, from the companies with diesel railways. The activity is present only in those areas without electrified railways, which are limited in the national territory. The trend reflects the decrease of the use of these railways. Because of low values, emissions from railways do not represent a key category. In Table 3.25, diesel consumptions (TJ) and nitrogen oxides, non-methane volatile organic compounds, sulphur oxides, ammonia, particulate and carbon monoxide emissions (Gg) are reported.

Emissions of Pb from 2002 are reported as 'NA", because of the introduction of unleaded liquid fuels in the market in 2002. In particular, heavy metals contents values derive from the analysis about the physical - chemical characterization of fossil fuels used in Italy (Innovhub, Fuel Experimental Station, several years).

Table 3.25 Consumptions and emissions time series in railways

Consumptions and Emissions for NFR Subsector 1.A.3.c	1990	1995	2000	2005	2010	2015	2016	2017	2018
Diesel Consumption (TJ)	8,370.25	8,199.43	5,850.63	4,142.42	2,690.44	939.52	640.58	1,409.28	1,879.04

Consumptions and Emissions for NFR Subsector 1.A.3.c	1990	1995	2000	2005	2010	2015	2016	2017	2018
Emissions from diesel trains (Gg)									
NO_X	10.27	10.06	7.18	5.08	3.24	1.00	0.67	1.43	1.85
NMVOC	0.91	0.89	0.64	0.45	0.29	0.09	0.06	0.13	0.18
SO_X	1.18	0.77	0.08	0.01	0.001	0.0003	0.0002	0.001	0.001
NH_3	0.001	0.001	0.001	0.001	0.0004	0.0002	0.0001	0.0002	0.0003
PM2.5	0.28	0.28	0.20	0.14	0.08	0.03	0.02	0.04	0.05
PM10	0.28	0.28	0.20	0.14	0.09	0.03	0.02	0.04	0.05
TSP	0.29	0.28	0.20	0.14	0.09	0.03	0.02	0.04	0.05
BC	0.18	0.18	0.13	0.09	0.06	0.02	0.01	0.03	0.03
CO	2.10	2.05	1.47	1.04	0.67	0.24	0.16	0.35	0.47

Source: ISPRA elaborations

In the review process has been observed the existence of at least one steam engine still operating in Italy. It is an historic train used only for few days per year and probably fuelled with biomass nowadays instead of coal. Nor biomass or coal are reported in the energy balance for railways activities. Anyway this possible source of emission could be considered insignificant.

No recalculation occurred in this submission.

No specific improvements are planned for the next submission.

3.10 NAVIGATION (NFR SUBSECTOR 1.A.3.D)

3.10.1 Overview

This source category includes all emissions from fuels delivered to water-borne navigation. Emissions decreased from 1990 to 2018, because of the reduction in fuel consumed in harbour and navigation activities; the number of movements, showing an increase since 1990, reverses the trend in recent years. National navigation is a key category in 2018 with respect to emissions of SO_X, NO_X, CO, PM10, PM2.5 and BC.

3.10.2 Methodological issues

Emissions of the Italian inventory from the navigation sector are carried out according to the IPCC Guidelines and Good Practice Guidance (IPCC, 1997; IPCC, 2000) and the EMEP/EEA Guidebook (EMEP/EEA, 2019). In particular, a national methodology has been developed following the EMEP/EEA Guidebook which provides details to estimate emissions from domestic navigation, specifying recreational craft, ocean-going ships by cruise and harbour activities; emissions from international navigation are also estimated and included as memo item but not included in national totals (EMEP/EEA, 2019). Inland, coastal and deep-sea fishing are estimated and reported under 1.A.4.c. International inland waterways do not occur in Italy.

The methodology developed to estimate emissions is based on the following assumptions and information.

Activity data comprise both fuel consumptions and ship movements, which are available in different level of aggregation and derive from different sources as specified here below:

- Total deliveries of fuel oil, gas oil and marine diesel oil to marine transport are given in national energy balance (MSE, several years (a)) but the split between domestic and international is not provided;
- Naval fuel consumption for inland waterways, ferries connecting mainland to islands and leisure boats, is also reported in the national energy balance as it is the fuel for shipping (MSE, several years (a));
- Data on annual arrivals and departures of domestic and international shipping calling at Italian harbours are reported by the National Institute of Statistics in the statistics yearbooks (ISTAT, several years (a)) and Ministry of Transport in the national transport statistics yearbooks (MIT, several years).

As for emission and consumption factors, figures are derived by the EMEP/EEA guidebook (EMEP/EEA, 2019), both for recreational and harbour activities and national cruise, taking into account national specificities. These specificities derive from the results of a national study which, taking into account detailed information on the Italian marine fleet and the origin-destination movement matrix for the year 1997, calculated national values (ANPA, 2001; Trozzi et al., 2002 (b)) on the basis of the default emission and consumption factors reported in the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007).

National average emissions and consumption factors were therefore estimated for harbour and cruise activities both for domestic and international shipping from 1990 to 1999. In 2009 submission the study was updated for the years 2004, 2005 and 2006 in order to consider most recent trends in the maritime sector both in terms of modelling between domestic and international consumptions and improvements of operational activities in harbour (TECHNE, 2009). On the basis of the results, national average emissions and consumption factors were updated from 2000.

Specifically, for the years referred to in the surveys, the current method estimates emissions from the number of ships movements broken down by ship type at each of the principal Italian ports considering the information of whether the ship movement is international or domestic, the average tonnage and the relevant distance travelled.

For those years, in fact, figures on the number of arrivals, destination, and fleet composition have been provided by the local port authorities and by the National Institute of Statistics (ISTAT, 2009), covering about

90% of the official national statistics on ship movements for the relevant years. Consumption and emission factors are those derived from the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007) and refer to the Tier 3 ship movement methodology that takes into account origin-destination ship movements matrices as well as technical information on the ships, as engine size, gross tonnage of ships and operational times in harbours. On the basis of sample information, estimates have been carried out at national level for the relevant years considering the official statistics of the maritime sector.

In general, to carry out national estimates of greenhouse gases and other pollutants in the Italian inventory for harbour and domestic cruise activities, consumptions and emissions are calculated for the complete time series using the average consumption and emission factors multiplied by the total number of movements. On the other hand, for international cruise, consumptions are derived by difference from the total fuel consumption reported in the national energy balance and the estimated values as described above and emissions are therefore calculated.

For maritime transportation only by Directive 1999/32/EC European Union started to examine environmental impact of navigation and in particular the sulphur content of fuels. This directive was amended by Directive 2005/33/EC that designated the Baltic Sea, the English Channel and the North Sea as sulphur emission control areas (SECA) limiting the content of sulphur in the fuel for these areas and introducing a limit of 0.1% of the sulphur content in the fuel used in EU harbours from 2010.

EU legislation combined with national normative resulted in the introduction of a limit of sulphur content in maritime gasoil equal to 0.2% (2% before) from 2002 and 0.1% from 2010 while for fuel oil some limits occur only from 2008 (maximum sulphur content of 1.5 % in harbour) and from 2010, 2% in domestic waters and 1% in harbour. For inland waterways, which include the navigation on the Po river and ferry-boats in the Venice lagoon, the same legislation is applied.

The composition of the fleet of gasoline fuelled recreational craft distinguished in two strokes and four strokes engine distribution is provided by the industrial category association (UCINA, several years); the trend of the average emission factors takes into account the switch from two strokes to four strokes engines of the national fleet due to the introduction in the market of new models. In 2000, the composition of the fleet was 90% two stroke engine equipped and 10% four stroke while in the last year four strokes engines are about 53 % of the fleet.

The fuel split between national and international fuel use in maritime transportation is then supplied to the Ministry of the Economical Development to be included in the official international submission of energy statistics to the IEA in the framework of the Joint Questionnaire OECD/EUROSTAT/IEA compilation together with other energy data. A discrepancy with the international bunkers reported to the IEA still remains, especially for the nineties, because the time series of the energy statistics to the IEA are not updated.

PCB, HCB and Dioxins emissions are estimated with Tier1 emission factors available in the 2019 EMEP/EEA Guidebook (EMEP/EEA, 2019).

3.10.3 Time series and key categories

In Table 3.26 the list of key categories by pollutant identified for navigation in 2018, 1990 and at trend assessment is reported. Navigation is, in 2018, key category for many pollutants: SO_X , NO_X , CO, PM10, PM2.5, BC; furthermore, it is a key driver of the SO_X and NO_X trend.

Table 3.26 List of key categories for pollutant in navigation in 2018, 1990 and in the trend

	Key categories in 2018	Key categories in 1990	Key categories in trend
SOx	1A3dii	1A3dii	1A3dii
NOx	1A3dii	1A3dii	1A3dii
CO	1A3dii		

	Key categories in 2018	Key categories in 1990	Key categories in trend
PM10	1A3dii	1A3dii	
PM2.5	1A3dii	1A3dii	
BC	1A3dii		

Source: ISPRA elaborations

Estimates of fuel consumption for domestic use, in the national harbours or for travel within two Italian destinations, and bunker fuels used for international travels are reported in Table 3.27.

An upward trend in emission levels is observed from 1990 to 2000, explained by the increasing number of ship movements. Nevertheless, the operational improvements in harbour activities and a reduction in ship domestic movements inverted the tendency in the last years.

Table 3.27 Marine fuel consumptions in domestic navigation and international bunkers (Gg) and pollutants emissions from domestic navigation (Gg)

Consumptions and Emissions for NFR Subsector 1.A.3.d	1990	1995	2000	2005	2010	2015	2016	2017	2018
Gasoline for recreational craft (Gg)	182.12	210.14	213.14	199.13	169.11	99.07	99.07	99.07	99.07
Diesel oil for inland waterways (Gg)	19.81	22.74	20.21	24.76	18.19	27.45	26.92	28.69	27.63
Fuels used in domestic cruise navigation (Gg)	778.06	706.38	811.37	739.97	725.35	545.35	542.40	545.99	550.09
Fuel in harbours (dom+int ships) (Gg)	748.46	692.95	818.48	758.89	743.90	559.30	556.27	559.95	600.17
Fuel in international Bunkers (Gg)	1,402.72	1,287.30	1,306.31	2,147.25	2,174.64	1,741.79	2,107.25	2,240.41	2,262.78
Emissions from National Navigation (Gg)									
Emissions of NOx	95.55	87.97	102.48	94.94	93.28	70.69	70.35	70.94	73.70
Emissions of NMVOC	46.11	52.42	50.17	43.28	31.82	16.64	16.15	15.58	15.21
Emissions of SOx	77.94	70.31	81.49	49.73	28.38	21.34	21.22	21.36	21.69
Emissions of PM2.5	9.30	8.83	9.61	8.90	7.86	5.57	5.51	5.55	5.59
Emissions of PM10	9.33	8.86	9.65	8.94	7.89	5.59	5.53	5.57	5.61
Emissions of BC	1.33	1.25	1.40	1.31	1.23	0.93	0.93	0.94	0.96
Emissions of CO	102.27	115.57	124.77	122.86	109.42	63.48	62.53	64.25	60.77

Source: ISPRA elaborations

3.10.4 **QA/QC** and Uncertainty

Basic data to estimate emissions are reconstructed starting from information on ship movements and fleet composition coming from different sources. Data collected in the framework of the national study from the local port authorities, carried out in 2009 (TECHNE, 2009), were compared with the official statistics supplied by ISTAT, which are collected from maritime operators with a yearly survey and communicated at international level to EUROSTAT. Differences and problems were analysed in details and solved together with ISTAT experts. Different sources of data are usually used and compared during the compilation of the annual inventory.

Besides, time series resulting from the recalculation have been presented to the national experts in the framework of an *ad hoc* working group on air emissions inventories. The group is chaired by ISPRA and includes participants from the local authorities responsible for the preparation of local inventories, sectoral experts, the Ministry of Environment, Land and Sea, and air quality model experts. Top-down and bottom-up approaches have been compared with the aim to identify the potential problems and future improvements to be addressed. There is also an ongoing collaboration and data exchange with regional environmental agencies on this issue.

3.10.5 **Recalculations**

A recalculation occurred for inland waterways for the years 2016 and 2017, for NOx, NMVOC and CO, due to the update of the percentage of gasoline four stroke fleet on the total which are in accordance with the Inland European Directive 2003/44. Moreover, the total fleet of recreational craft for 2017 has been updated.

According to the review (EEA, 2019), PCB, HCB and Dioxins emissions have been estimated and included in the inventory for this category with the emission factors of Tier1 available in the 2019 EMEP/EEA Guidebook.

3.10.6 Planned improvements

Further improvements will include a verification of activity data on ship movements and emission estimates with regional environmental agencies, especially with those more affected by maritime pollution. The time series of recreational craft gasoline fuel consumption also is planned to be reconstruct and update due to a lack of information on the national energy statistics for the last years.

3.11 PIPELINE COMPRESSORS (NFR SUBSECTOR 1.A.3.E)

Pipeline compressors category (1.A.3e) includes all emissions from fuels delivered to the transportation by pipelines and storage of natural gas. Relevant pollutant emissions typical of a combustion process, such as SO_X , NO_X , CO and PM emissions, derive from this category. This category is not a key category.

Emissions from pipeline compressors are estimated on the basis of natural gas fuel consumption used for the compressors and the relevant emission factors. The amount of fuel consumption is estimated on the basis of data supplied for the whole time series by the national operators of natural gas distribution (SNAM and STOGIT) and refers to the fuel consumption for the gas storage and transportation; this consumption is part of the fuel consumption reported in the national energy balance in the consumption and losses sheet. Emission factors are those reported in the EMEP/EEA Guidebook for gas turbines (EMEP/CORINAIR, 2007). Emissions communicated by the national operators in their environmental reports are also taken into account to estimate air pollutants, especially SO_X, NO_X, CO and PM10.

Regarding QA/QC, fuel consumptions reported by the national operators for this activity are compared with the amount of natural gas internal consumption and losses reported in the energy balance as well as with energy consumption data provided by the operators to the emission trading scheme.

Starting from the length of pipelines, the average energy consumptions by kilometre are calculated and used for verification of data collected by the operators. Energy consumptions and emissions by kilometre calculated on the basis of data supplied by SNAM, which is the main national operator, are used to estimate the figures for the other operators when their annual data are not available.

No recalculations occurred with respect the previous submission.

In Table 3.28, nitrogen oxides, non-methane volatile organic compounds, sulphur oxides, particulate and carbon monoxide emissions (Gg) are reported.

Table 3.28 Emissions from pipeline compressors (Gg)

Emissions for NFR Subsector 1.A.3.e	1990	1995	2000	2005	2010	2015	2016	2017	2018
NOx	2.89	4.18	2.96	2.37	1.71	0.36	0.46	0.55	0.60
NMVOC	0.02	0.03	0.04	0.04	0.05	0.02	0.03	0.03	0.03
SOx	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.005
PM10	0.02	0.03	0.05	0.03	0.03	0.02	0.02	0.02	0.02
CO	1.26	1.38	1.03	0.60	0.61	0.23	0.30	0.35	0.21

Source: ISPRA elaborations

3.12 CIVIL SECTOR: SMALL COMBUSTION AND OFF-ROAD VEHICLES (NFR SUBSECTOR 1.A.4 - 1.A.5)

3.12.1 **Overview**

Emissions from energy use in the civil sector cover combustion in small-scale combustion units, with thermal capacity < 50 MWth, and off road vehicles in the commercial, residential and agriculture sectors.

The emissions refer to the following categories:

- 1 A 4 a i Commercial / Institutional: Stationary
- 1 A 4 a ii Commercial / Institutional: Mobile
- 1 A 4 b i Residential: Stationary plants
- 1 A 4 b ii Residential: Household and gardening (mobile)
- 1 A 4 c i Agriculture/Forestry/Fishing: Stationary
- 1 A 4 c ii Agriculture/Forestry/Fishing: Off-road Vehicles and Other Machinery
- 1A 4 c iii Agriculture/Forestry/Fishing: National Fishing
- 1 A 5 a Other, Stationary (including military)
- 1 A 5 b Other, Mobile (Including military, land based and recreational boats)

In Table 3.29 the list of categories for small combustion and off road vehicles identified as key categories by pollutant for 2018, 1990 and in the trend is reported.

Table 3.29 *List of key categories by pollutant in the civil sector in 2018, 1990 and trend*

	Key cate	gories in 20	18	Key cate	gories in 1990	Key categ	gories in trend	
SO _X	1 A 4 b i			1 A 4 b i		1 A 4 a i		
NO_X	1 A 4 b i	1 A 4 a i	1 A 4 c ii	1 A 4 c ii		1 A 4 a i	1 A 4 b i	1 A 4 c i
NMVOC	1 A 4 b i	1 A 4 a i		1 A 4 b i	1 A 4 c ii	1 A 4 b i	1 A 4 a i	1 A 4 c ii
CO	1 A 4 b i			1 A 4 b i	1 A 4 c ii	1 A 4 b i		
PM10	1 A 4 b i			1 A 4 b i	1 A 4 c ii	1 A 4 b i	1 A 4 c ii	
PM2.5	1 A 4 b i			1 A 4 b i	1 A 4 c ii	1 A 4 b i	1 A 4 c ii	
BC	1 A 4 b i	1 A 4 c ii		1 A 4 c ii	1 A 4 b i	1 A 4 b i	1 A 4 c ii	
Cd	1 A 4 b i			1 A 4 b i	1 A 4 a i			
PAH	1 A 4 b i			1 A 4 b i		1 A 4 b i		
DIOX	1 A 4 b i			1 A 4 a i	1 A 4 b i	1 A 4 b i	1 A 4 a i	
HCB	1 A 4 b i	1 A 4 a i				1 A 4 a i	1 A 4 b i	
PCB	1 A 4 b i					1 A 4 b i		

3.12.2 Activity data

The Commercial / Institutional emissions arise from the energy used in the institutional, service and commercial buildings, mainly for heating. Additionally, this category includes all emissions due to wastes used in electricity generation as well as biogas recovered in landfills and wastewater treatment plant. In the residential sector the emissions arise from the energy used in residential buildings, mainly for heating and the sector includes emissions from household and gardening machinery. The Agriculture/ Forestry/ Fishing sector includes all emissions due to the fuel, including biogas from biodigestors, used in agriculture, mainly to

produce mechanical energy, the fuel use in fishing and for machinery used in the forestry sector. Emissions from military aircraft and naval vessels are reported under 1A.5.b Mobile.

Emissions from 1.A.4.a ii are reported as IE, included elsewhere, because of they refer to road transport emissions of institutional and commercial vehicles. These emissions are estimated, and reported in 1.A.3.b, with a model (COPERT 5) which consider the vehicle fleet subdivided by technology and fuel and not by user. Emissions from 1.A.5.a are also reported as IE because they refer to stationary combustion in commercial and residential of military which are included and reported in 1.A.4.a i and 1.A.4.b i; also in this case the relevant energy statistics are not available by user.

The estimation procedure follows that of the basic combustion data sheet. Emissions are estimated from the energy consumption data that are reported in the national energy balance (MSE, several years (a)) and separating energy consumption between commercial/institutional, residential, agriculture and fishing, according to the information available in the Joint Questionnaire OECD/IEA/EUROSTAT prepared by the Ministry of Economical Development and officially sent to the international organizations.

Emissions from 1.A.4.b Residential and 1.A.4.c Agriculture/Forestry/Fishing are disaggregated into those arising from stationary combustion and those from off-road vehicles and other machinery. The time series of fuel consumption for the civil sector are reported in Table 3.30.

Table 3.30 *Time series of fuel consumption for the civil sector*

	1990	1995	2000	2005	2010	2015	2016	2017	2018
					TJ				
1 A 4 a i Commercial / Institutional: Stationary plants	206,427	247,440	306,051	419,476	488,985	400,538	402,584	402,621	429,249
1 A 4 b i Residential: Stationary plants	1,002,131	1,003,620	1,036,905	1,172,315	1,222,518	1,078,526	1,070,424	1,093,224	1,044,891
1 A 4 b ii Residential: Household and gardening (mobile)	466	571	374	154	66	57	35	35	35
1 A 4 c i Agriculture/Forestry/Fishing: Stationary	9,688	9,487	8,146	10,172	8,829	8,237	6,406	6,569	6,649
1 A 4 c ii Agriculture/Forestry/Fishing: Off-road Vehicles and Other Machinery	96,536	101,928	94,668	95,869	84,461	81,263	83,116	83,543	88,497
1A 4 c iii Agriculture/Forestry/Fishing: National Fishing	8,413	9,651	8,584	10,464	7,731	6,194	6,918	6,662	7,046
1 A 5 b Other, Mobile (Including military, land based and recreational boats)	14,840	20,814	11,595	16,947	9,001	6,388	7,183	4,531	4,754

3.12.3 Methodological issues

The Tier 2 methodology is applied to the whole category. Emission are estimated for each fuel and category at detailed level and country specific emission factors are used for the key fuel and categories drivers of total emission trend.

More in detail, 1.A.4.a i, is key category in 2018 and in trend for NO_X, NMVOC and HCB emissions as well as for cadmium and Dioxin in 1990, and SO_X in trend analysis. Most of these pollutants are due prevalently to emissions from waste incineration with energy recovery (more than 99% for HCB and other HMs and POPs, around 90% for Cd, NMVOC and SO_X and 26% of the total for NO_X). Emissions from waste combustion in incinerator with energy recovery have been calculated with a Tier 3 methodology from the database of incinerator plants which includes plant specific emission factors on the basis of their technology and measurements data (ENEA-federAmbiente, 2012). The methodology used to estimate emissions from incinerators is reported in the relevant paragraph on waste incineration in the waste sector, and in particular EFs are reported in Table 7.3. Up to 2009 emission factors have been estimated on the basis of a study conducted by ENEA (De Stefanis P., 1999), based on emission data from a large sample of Italian incinerators (FEDERAMBIENTE, 1998; AMA-Comune di Roma, 1996), legal thresholds (Ministerial Decree 19

November 1997, n. 503 of the Ministry of Environment; Ministerial Decree 12 July 1990) and expert judgements.

Waste management with incinerators is a commercial activity with recover of the energy auto-produced and emissions from these plants are allocated in the commercial / institutional category because of the final use of heat and electricity production. In fact, until the early 2000s, electricity and heat produced by incinerators have been prevalently used to satisfy the energy demand from connected activities: heating of buildings, domestic hot water and electricity for offices. This is still true in particular for industrial and hospital incinerators, meanwhile municipal solid waste incinerators have increased the amount of energy provided to the grid from the early 2000s until now, although only a small percentage of energy produced goes to the electricity grid (around 10%); the energy recovered by these plants is mainly used for district heating of commercial buildings or used to satisfy the internal energy demand of the plants. Since 2010, emission factors for urban waste incinerators have been updated on the basis of data provided by plants (ENEA-federAmbiente, 2012; De Stefanis P., 2012) concerning the annual stack flow, the amount of waste burned and the average concentrations of the pollutants at the stack and taking in account the abatement technologies in place. As the emission factors are considerably lower than the old ones due to the application of very efficient abatement systems it was necessary to apply a linear smoothing methodology assuming a progressive application of the abatement systems between 2005 and 2010. In a similar way, emission factors for industrial waste incinerators have been updated from 2010 onwards on the basis of the 2019 EMEP/EEA Guidebook. Similarly, to municipal waste smoothing has been applied between 2005 and 2010 supposing a linear application of the abatement systems.

The other fuels driving emissions from this category are wood combustion, especially for NMVOC, and natural gas for NO_X while trend of SO_X are driven by the decrease both of liquid fuel, as gasoil, fuel oil and kerosene, consumptions and their sulphur content which is also decreased according to European Union and national legislation. For what concerns wood combustion the NMVOC average emission factor, as well as all the other pollutants, takes into account the different technologies used and is calculated on the basis of country specific emission factors and the ranges reported in the 2019 EMEP/EEA Guidebook; see paragraph 3.12.3.2 for details on methodology and emission factors. For natural gas and NO_X emissions, a Tier 2 methodology is used and country specific emission factors as described in the following paragraph 3.12.3.1. For the other fuels the default emission factors of EMEP/CORINAIR 2007 Guidebook have been used; it is planned to update these emission factors with those reported in the 2019 EMEP/EEA Guidebook. For gasoil, biogas and gasoline different emission factors are used for stationary engines and boilers.

Concerning the other pollutants, PM2.5 emissions from wood and waste account for around 80% of the total 1.A.4.a i category; the other main fuel used for this category is biogas from landfills and waste water treatment energy recovery, which account for around 10% of PM2.5 emissions of this category; an emission factor equal to 10 g/GJ is used. The other fuels have been estimated with EMEP/CORINAIR 2007 emission factors. For NO_x, in addition to waste fuel, see methodology in the waste chapter and in particular emission factors reported in Table 7.3, and natural gas, as described in the following paragraph 3.12.3.1, the other main fuel driving emission estimates is biogas from landfills and waste water treatment energy recovery, accounting for 45% of NO_x emissions of this category in 2018, but for which no guidance is provided in the Guidebook. An emission factor equal to 1 kg/TJ has been used taking into account that the gas is burnt in stationary engines. These fuels plus wood, that is also estimated with a Tier 2, account for more than 98% of total NO_x category emissions. HM and POP emissions from the sector are prevalently from waste incineration, estimated with country specific EFs, at technology level, and from wood combustion estimated also with country specific EFs in the range of 2019 EMEP/EEA Guidebook values.

For 1.A.4.b i, the category is key category in 2018 for SO_X , NO_X , NMVOC, CO, PM10, PM2.5, BC, Cd, PAH, Dioxin, HCB and PCB emissions. Most of these pollutants are also key in 1990 and for trend analysis. Most of these pollutants are due prevalently to emissions from wood combustion (more than 99% for PM, BC, Se, Zn, HCB and PCB emissions, 98% for dioxins, more than 90% for other PMS, as well as for PMS0 and PMS1 are PMS2. The sum of PMS2 are PMS3 and PMS3 are PMS4 are PMS5. The sum of PMS4 are PMS5 are PMS6. The sum of PMS6 are PMS6 are PMS8 are PMS9 and PMS9 are PMS9. The sum of PMS9 are PMS1 are PMS2 are PMS1 are PMS2 are PMS2 are PMS2 are PMS2 are PMS3 are PMS3 are PMS3 are PMS3 are PMS3 are PMS4 are PMS4 are PMS4 are PMS5 are PMS4 ar

For SO_X country specific and updated emission factors are used for wood, gasoil, residual oil, natural gas and LPG calculated on the basis of the maximum content of sulphur in these fuels; emissions from these fuels account for about 99.9% of SO_X category emissions.

A country specific methodology has been developed and applied to estimate NO_X emissions from gas powered plants and all emissions from wood combustion. More than 50% of the total emissions are due to the

combustion of natural gas; methodology and country specific emission factors are described in the following paragraph 3.12.3.1. Biomass combustion accounts for around 40% of the total and methodology and country specific emission factors are also available in paragraph 3.12.3.2. For the other fuels, the default EMEP/CORINAIR 2007 Guidebook values have been used. In particular for liquid fuels (gasoil, kerosene and LPG) a default equal to 50 g/GJ is used. All these fuels cover more than 99% of total category emissions.

For 1.A.4cii, 1.A.4cii, 1.A.4ciii and 1.A.5b emission estimates are calculated taking into account the relevant changes in emission factors along the time series due to the introduction of the relevant European Union Directives for off-road engines. Regarding mobile machinery used in agriculture, forestry and household, these sectors were not governed by any legislation until the Directive 97/68/EC (EC, 1997 [a]), which provides for a reduction in NO_X limits from 1st January 1999, and Directive 2004/26/EC (EC, 2004) which provide further reduction stages with substantial effects from 2011, with a following decreasing trend particularly in recent years. For engines with lower power as those used in forestry, household and gardening, the European Directives introduce emissions limits only starting from 2019 and 2021 so they have not had effect up to now. Moreover, for the category 1.A.4.bii, 1.A.4.cii and 1.A.4.ciii, Pb emissions from 2002 are reported as 'NA", because of the introduction of unleaded liquid fuels in the market in 2002. In particular heavy metals contents values derive from the analysis about the physical - chemical characterization of fossil fuels used in Italy (Innovhub, Fuel Experimental Station, several years). According to the review (EEA, 2019), PCB, HCB and Dioxins emissions have been estimated and included in the inventory for 1.A.4.ciii category with the emission factors of Tier1 available in the 2019 EMEP/EEA Guidebook.

3.12.3.1 NO_X emissions from gas powered plants in the civil sector

A national methodology has been developed and applied to estimate NO_X emissions from gas powered plants in the civil sector, according to the EMEP/EEA Guidebook (EMEP/EEA, 2016).

On the basis of the information and data reported in available national studies for the year 2003, a distribution of heating plants in the domestic sector by technology and typology has been assessed for that year together with their specific emissions factors. Data related to heating plants, both commercial and residential, have been supplied for 2003 by a national energy research institute (CESI, 2005). In this study, for the residential sector, the sharing of single and multifamily houses plants by technology and a quantitative estimation of the relevant gas powered ones are reported, including their related NO_X emission factors. Domestic final consumption by type of plant, single or multifamily plants, has been estimated on the basis of data supplied by ENEA on their distribution (ENEA, several years).

Data reported by ASSOTERMICA (ASSOTERMICA, several years) on the number of heating plants sold are used for the years after 2003 to update the information related to the technologies. A linear regression, for the period 1995-2003, has been applied, while for the period 1990-1994, the technology with the highest emission factor has been assumed to be operating.

In Table 3.31 the time series of NO_X average emission factors for the relevant categories is reported.

Table 3.31 Time series of NO_X emissions factor for the civil secto	r
--	---

EF NOx	1990	1995	2000	2005	2010	2015	2016	2017	2018
					g/Gj				
1 A 4 a i Commercial / Institutional: Stationary	50	48.5	40.2	35.2	32.4	30.3	29.9	29.5	29.1
1 A 4 b i Residential: Stationary plants	50	48.2	38.6	32.4	31.3	30.5	30.2	29.9	29.5

3.12.3.2 Emissions from wood combustion in the civil sector

A national methodology has been developed and applied to estimate emissions from wood combustion in the civil sector, according to the TIER 2 methodology reported in the EMEP/EEA Guidebook (EMEP/EEA, 2016). In the past years, several surveys have been carried out to estimate national wood consumption in the domestic heating and the related technologies used. In the estimation process, three surveys have been taken

into account: the first survey (Gerardi and Perrella, 2001) has evaluated the technologies for wood combustion used in Italy for the year 1999, the second survey (ARPA, 2007) was related to the year 2006, while the third survey (SCENARI/ISPRA, 2013) was related to the year 2012.

For 2015 and 2018 information on the use of pellet, as available in the national energy balance, and on the relevant technologies, as provided by the industrial association, has been used to take in account the increase of pellet used for heating; the update has been developed taking in account also the results of the surveys on wood consumption and combustion technologies carried out by ISPRA (SCENARI/ISPRA, 2013) and by ISTAT (ISTAT, 2014).

The technologies assessed by the abovementioned surveys and their distribution are reported in Table 3.32.

Table 3.32 Distribution of wood combustion technologies

Distribution of wood combustion technologies										
	1999	2006	2012	2015	2018					
			%							
Fireplaces	51.3	44.7	51.2	49.0	41.0					
Stoves	28.4	27.6	22.9	21.0	19.0					
Advanced fireplaces	15.4	20.2	15.8	15.0	20.0					
Pellet stoves	0	3.1	4.0	9.0	12.0					
Advanced stoves	4.8	4.4	6.0	6.0	8.0					

Average emission factors for 1999, 2006, 2012, 2015 and 2018 have been estimated at national level taking into account the technology distributions; for 1990 only old technologies (fireplaces and stoves) have been considered and linear regressions have been applied to reconstruct the time series from 1990 to 2006. For the years till 2011, emission factors from 2006 have been used in absence of further available information.

For NMVOC, PAH, PM10 and PM2.5 emission factors the results of the experimental study funded by the Ministry of Environment and conducted by the research institute 'Stazione Sperimentale dei Combustibili' (SSC, 2012) have been used. This study measured and compared NO_X, CO, NMVOC, SO_X, TSP, PM10, PM2.5, PAH and Dioxin emissions for the combustion of different wood typically used in Italy as beech, hornbeam, oak, locust and spruce-fir, in open and closed fireplaces, traditional and innovative stoves, and pellet stoves. Emissions from certificated and not certificated pellets have been also measured and compared. In general, measured emission factors results in the ranges supplied by the EMEP/EEA Guidebook but for some pollutants and technologies results are sensibly different. In particular NMVOC emissions for all the technologies are close or lower to the minimum value of the range reported in the Guidebook, as well as PM emissions with exception of emissions from pellet stoves which are higher of the values suggested in the case of the use of not certificated pellet. For these pollutants the minimum values of the range in the Guidebook have been used when appropriate. For that concern PAH, measured emissions from open fireplaces are much lower than the minimum value of the range in the Guidebook while those from the advanced stoves are close to the superior values of the range for all the PAH compounds. In this case, for open fireplaces, experimental values have been used while for the other technologies the minimum or maximum values of the range in the Guidebook have been used as appropriate. For the other pollutants where differences with the values suggested by the Guidebook are not sensible, a more in-depth analysis will be conducted with the aim to update the emission factors used if needed.

In Table 3.33 emission factors used for the Italian inventory are reported.

Table 3.33 Emission factors for wood combustion

	1990	1995	2000	2005	2010	2015	2018
				g/Gj			
NO _x	50	55	59	61	61	61	65
CO	6000	5791	5591	5427	5395	5010	4710
NMVOC	762	715	672	643	638	597	545
SO_2	10	11	12	13	13	13	14
NH_3	9	7	6	6	6	6	5
PM10	507	465	428	408	406	392	356
PM2.5	503	461	424	404	402	388	352
BC	40	37	35	34	34	33	31
PAH	0.25	0.24	0.23	0.22	0.22	0.21	0.20
Dioxin (\Box g/GJ)	0.48	0.47	0.45	0.44	0.43	0.40	0.38
PCB	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006
HCB	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
As	0.001	0.001	0.001	0.001	0.0005	0.0005	0.0005
Cd	0.002	0.002	0.001	0.001	0.001	0.001	0.001
Cr	0.001	0.002	0.003	0.003	0.003	0.003	0.003
Cu	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Hg	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
Ni	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Pb	0.04	0.04	0.04	0.04	0.04	0.04	0.03
Se	0.001	0.001	0.001	0.001	0.0005	0.0005	0.0005
Zn	0.10	0.10	0.10	0.09	0.09	0.09	0.09
B(a)P	0.07	0.07	0.07	0.07	0.07	0.06	0.06
B(b)F	0.09	0.08	0.08	0.08	0.08	0.07	0.07
B(k)F	0.04	0.04	0.04	0.04	0.03	0.03	0.03
IND	0.05	0.05	0.05	0.05	0.04	0.04	0.04

In 2014 the national Institute of Statistics (ISTAT) carried out a survey, funded by the Ministry of Economic Development and infrastructure (MSE), on the final energy consumption of households for residential heating which include the fuel consumption of solid biomass, as wood and pellets (ISTAT, 2014). In this regard the survey resulted in an official statistic for 2012 and 2013 of wood and pellet fuel consumption at national and regional level including the information on the relevant equipment. The resulting figure for 2013 doubled the value reported in the National Energy Balance for previous years which asked for the need to update the whole time series. An *ad hoc* working group has been established, involving ISPRA, MSE and the energy management system national operator (GSE), to reconstruct the complete time series of wood and pellet fuel consumption which has been recalculated and officially submitted to Eurostat in June 2015.

The methodology to recalculate consumption figures has taken in account the amount of wood harvested for energy purposes, the amount of wood biomass from pruning, import and export official statistics to estimate total wood consumption. A model to estimate the annual amount of wood for heating has been developed on the basis of the annual energy total biomass demand of households estimated considering the degree days time series, the number of households, the energy efficiency of equipment and fuel consumption statistics for the other fuels. As a consequence, time series for residential heating have been completely recalculated affecting the relevant pollutants and resulting in important recalculations at national total levels.

3.12.4 Time series and key categories

The time series of emissions for civil sector shows an increasing trend for all pollutants except for SO_X and NO_X , due to a gradual shift from diesel fuel to gas, concerning SO_X , and to a replacement of classic boilers with those with low NO_X emission. All the other pollutants have a growing trend, as a consequence of the increase of wood combustion.

In particular the pollutants which are more affected by the increase of wood biomass in this category according to data available in the National Energy Balance are PM, PAH, NMVOC and CO. In particular for

1.A.4.c i the increasing trend of PAH in the last years is due to the increase of wood combustion for this category.

More in detail the decrease of SO_X emissions is the combination of the switch of fuel from gasoil and fuel oil to natural gas and LPG and the reduction in the average sulphur content of liquid fuels. The SO_X emission factors for 1990 and 2018 by fuels are shown in the following box.

EMISSION FACTORS (kg/Gj)		
FUEL	1990	2018
steam coal	0.646	0.646
coke oven coke	0.682	0.682
wood and similar	0.010	0.014
municipal waste	0.069	0.046
biodiesel	0.047	0.047
residual oil	1.462	0.146
gas oil	0.140	0.047
kerosene	0.018	0.018
natural gas	0.0003	0.0003
biogas	-	-
LPG	0.0022	0.0022
gas works gas	0.011	0.011
motor gasoline	0.023	0.023

Time series of emissions is reported in Table 3.34.

Table 3.34 Time series of emissions in civil sector: small combustion and off-road vehicles

		1990	1995	2000	2005	2010	2015	2016	2017	2018
SOx	1A4	96.47	42.66	26.39	22.86	12.13	10.30	10.31	10.15	10.42
(Gg)	1A5	1.19	0.81	0.21	0.17	0.13	0.12	0.15	0.08	0.10
NOx	1A4	174.96	187.20	175.62	166.16	145.45	127.87	127.34	125.65	124.63
(Gg)	1A5	11.16	11.99	7.24	13.50	6.11	3.29	3.28	2.36	2.05
CO (Mg)	1A4	1093.21	1088.79	1028.01	997.44	1716.14	1440.68	1392.67	1515.62	1331.31
CO (Mg)	1A5	65.12	79.02	45.49	54.48	17.33	16.49	19.73	11.93	13.23
PM10	1A4	84.63	89.76	85.68	81.07	129.33	110.45	106.84	116.04	97.95
(Mg)	1A5	1.27	1.54	0.90	1.60	0.81	0.47	0.49	0.34	0.31
PM2.5	1A4	83.81	89.07	84.89	80.27	127.98	109.25	105.68	114.77	96.77
(Mg)	1A5	1.27	1.54	0.90	1.60	0.81	0.47	0.49	0.34	0.31
BC (Mg)	1A4	14.90	16.14	14.71	12.47	13.76	11.01	10.59	11.19	9.88
BC (Mg)	1A5	0.72	0.82	0.49	0.92	0.46	0.25	0.25	0.18	0.16
Dh (Ma)	1A4	81.95	34.29	24.64	46.34	16.46	15.11	14.56	15.24	14.48
Pb (Mg)	1A5	16.34	4.22	1.16	0.00	NA	0.12	0.02	0.02	0.09
Cd (Ma)	1A4	1.51	1.21	1.74	2.62	0.66	0.55	0.53	0.55	0.51
Cd (Mg)	1A5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IIa (Ma)	1A4	0.61	0.71	1.04	1.97	0.52	0.49	0.48	0.49	0.49
Hg (Mg)	1A5	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAH	1A4	32.06	35.44	35.91	39.08	67.42	56.10	54.33	59.39	52.33
(Mg)	1A5	0.02	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00
НСВ	1A4	1.88	2.87	6.30	6.30	4.49	3.31	3.35	3.55	3.42
(Kg)	1A5	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCB	1A4	14.92	18.33	25.73	36.26	22.01	18.99	18.70	20.20	18.95
(Kg)	1A5	NA	NA	NA	NA	NA	NA	NA	NA	NA

3.12.5 QA/QC and Uncertainty

Basic data used in the estimation process are reported by Ministry of Economic Development in the National Energy Balance (MSE, several years (a)) and by TERNA (National Independent System Operator), concerning the waste used to generate electricity.

The energy data used to estimate emissions have different levels of accuracy:

- the overall sum of residential and institutional/service/commercial energy consumption is quite reliable and their uncertainty is comparable with data reported in the BEN; the amount of fuels used is periodically reported by main suppliers;
- the energy consumption for agriculture and fisheries is reported in energy statistics; data are quite reliable as they have special taxation regimes and they are accounted for separately;
- the energy use for military and off roads is reported in official statistics, but models are applied to estimate the energy use at a more disaggregated level.

3.12.6 **Recalculation**

Some recalculations affected 1A4 category in this submission.

Energy recovery from waste reported in the commercial heating has been updated for 2017. PM, HM and POPs emission factors for industrial waste incinerators, with and without energy recovery, have been updated from 2006 according to the review process resulting in a general reduction of emissions. Further details are reported in the waste chapter.

NO_X average emission factors for natural gas boilers have been updated by 2015 according to the statistics on boilers sold in the last years. In general is observed a reduction of the average emission factor due to the increase of penetration in the market of heating pumps that are more energy efficient.

From 2015 average emission factors for wood consumption in residential and commercial small combustion plants have been updated on the basis of the update of the distribution by technology of wood combustion resulting in increase or decrease of the emissions depending from the pollutants.

According to the review (EEA, 2019), PCB, HCB and Dioxins emissions have been estimated and included in the inventory for 1.A.4.ciii category with the emission factors of Tier1 available in the 2019 EMEP/EEA Guidebook.

3.12.7 Planned improvements

The updating of average emission factors is planned for future submission on the basis of the surveys on wood consumption and combustion technologies planned by ISTAT on fuel consumptions as well as from the results of a emission factor measurements campaign realized in Italy (ALTROCONSUMO, 2018), and another measurements campaign on advanced stoves on going with Innovhub. An in depth analysis of emission factors resulting from this experimental studies and their comparison with the values suggested by the last version of the EMEP/EEA Guidebook (EMEP/EEA, 2019) will be carried out and emission factors will be updated as needed.

3.13 FUGITIVE EMISSIONS (NFR SUBSECTOR 1.B)

3.13.1 Overview

Fugitive emissions arise during the stages of fuel production, from extraction of fossil fuels to their final use. Emissions are mainly due to leaks or other irregular releases of gases from the production and transformation of solid fuels, the production of oil and gas, the transmission and distribution of gas and from oil refining.

In Table 3.35 the list of categories for fugitive emissions identified as key categories by pollutant for 2018, 1990 and in the trend is reported.

 Table 3.35 List of key categories by pollutant in the civil sector in 2018, 1990 and trend

	Key categories in 2018	Key categories in 1990	Key categories in trend
SO_X	1 B 2 a iv	1 B 2 a iv	1 B 2 a iv
NMVOC	1 B 2 b	1 B 2 a v	1 B 2 a v
NH ₃			1 B 2 d
Hg	1 B 2 d	1 B 2 d	1 B 2 d

3.13.2 Methodological issues

In the following methodological issues including activity data and emission factors used are reported for each category and pollutant estimated in this sub sector.

Coal mining and handling (1B1a)

NMVOC emissions from coal mining have been estimated on the basis of activity data published on the national energy balance (MSE, several years [a]) which report the amount of coal production and emission factors provided by the EMEP/EEA Guidebook (EMEP/EEA, 2016).

PM emissions from storage of solid fuels have been estimated and included in this category. Activity data is the annual consumption of solid fuels published on the national energy balance (MSE, several years [a]) and emission factor are from the US EPA Guidebook.

Solid fuel transformation (1B1b)

NMVOC emissions from coke production have been estimated on the basis of activity data published in the national energy balance (MSE, several years [a]) and country specific emission factors calculated taking in account the information provided by the relevant operators in the framework of the EPRTR registry and the ETS. NO_X, SO_X and NH3 emissions from coke production are estimated on the basis of data communicated by the national plants in the framework of the EPRTR and are reported under 1.A.1 c category. NH₃ emissions have been estimated on the basis of data communicated by the operators for the EPRTR registry from 2002. According to the review (EEA, 2019), PAH emissions from coke production has been also estimated with emission factor from the 2019 EMEP/EEA Guidebook (EMEP/EEA, 2019) but these emissions have been reported under 2C instead of 1.B.1b. In the next submission we will report PAH emissions in the relevant sector.

Oil exploration and production (1B2a i)

NMVOC emissions have been calculated according with activity data published on national energy balance (MSE, several years [a]), data by oil industry association (UP, several years), data and emission factors provided by the relevant operators.

Oil transport and storage and refining (1B2a iv)

Fugitive emissions from oil refining are estimated starting from the total crude oil losses as reported in the national energy balance (MSE, several years [a] and occur prevalently from processes in refineries.

This category is key for SO_X in 2018, in the base year and for the trend.

Emissions in refineries have been estimated on the basis of activity data published in the national energy balance (MSE, several years [a]) or supplied by oil industry association (UP, several years) and operators especially in the framework of the European Emissions Trading Scheme (EU-ETS). Fugitive emissions in refineries are mainly due to catalytic cracking production processes, sulphur recovery plants, flaring and emissions by other production processes including transport of crude oil and oil products. These emissions are then distributed among the different processes on the basis of average emission factors agreed and verified with the association of industrial operators, Unione Petrolifera, and yearly updated, from 2000, on the basis of data supplied by the plants in the framework of the European Emissions Trading Scheme, Large Combustion Plant Directive and EPRTR. SO_X, NO_X and PM emissions communicated by the plants in the framework of Large Combustion Plants directive are assumed to refer to combustion and are reported under 1.A.1b while the difference with the totals, communicated to the EPRTR, are considered as fugitive emissions and reported in 1.B.2a iv. NMVOC are communicated by the operators for the EPRTR registry as a total and the amount to be reported as fugitive is calculated subtracting by the total emission estimates for combustion activities and reduced for the implementation of losses control technology especially for transportation and storage of liquid fuels. ETS data are used to integrate and check emission data provided. Moreover fugitive emissions are also checked with the average emission factors provided by the relevant industrial association for each relevant process, as fluid catalytic cracking, sulphur recovery plant, and storage and handling of petroleum products. NH₃ emissions from refineries have been estimated on the basis of data communicated by the operators for the EPRTR registry and distributed between combustion and fugitive emissions according to the emission factors available in the 2016 EMEP/EEA Guidebook.

Emissions from refineries of HM and POPs are all reported in 1.A.1b on the basis of data submitted in the PRTR framework at plant level; it is not possible at the moment distinguish combustion by fugitive emissions of HM and POPs. We plan to address this issue for the next submission according to the Tier 2 EFs provided in the 2019 EMEP/EEA Guidebook.

Distribution of oil products (1B2a v)

This category is key for NMVOC in 1990 and for the trend. The category includes fugitive emissions from oil transport which have been calculated according with the amount of transported oil (MIT, several years) and emission factors published on the IPCC guidelines (IPCC, 2006). Most of the crude oil is imported in Italy by shipment and delivered at the refineries by pipelines as offshore national production of crude oil. The category includes also NMVOC fugitive emissions for gasoline distribution, storage and at service stations. Emission factors are estimated starting from the emissions communicated in the nineties by the operators and applying the implementation of the abatement technologies as regulated by the relevant European Union legislation. Emissions from distribution of gasoline have been reduced as a result of the application of the DM 16th May 1996 (Ministerial Decree 16 May 1996), concerning the adoption of devices for the recovery of vapours and of the applications of measures on deposits of gasoline provided by the DM 21st January 2000 (Ministerial Decree 21 January 2000).

Flaring in refineries (1B2c)

For what concern emissions from flaring in refineries, the emission factors for SO_X, NO_X, NMVOC and CO have been provided by the relevant industrial association and are assumed constant since 1990 with the exception of SO_X that are yearly estimated on the basis of the amount of sulphur not recovered by the operators and flared. Activity data, in terms of gas flared, is from 2005 derived by the ETS data at plant level.

According to the review process NH_3 , Hg and other heavy metals from geothermal production has been estimated and included in the emission inventory in the 2018 submission with a Tier 2 methodology. Hg from this category is key category for 2018, the base year and the trend while NH_3 is key for the trend.

Emissions are monitored by the Regional relevant environmental agency, ARPAT, where all the geothermal fields are located. Activity data, geothermal energy production, are published in the national energy balance (MSE, several years [a]) while emission data resulting by the monitoring are issued by ARPAT and reported from 2000 on yearly basis (ARPAT, several years). For earlier years emission factors of 2000 have been used.

3.13.2.1 Fugitive emissions from natural gas distribution (1.B.2b)

NMVOC emissions from this category is key category for 2018 and trend. NMVOC fugitive emissions from the transport, storage and distributions (including housing) of natural gas (both in pipelines and in the distribution network) are calculated every year on the basis of fugitive natural gas emissions and the content of NMVOC in the gas distributed; NMVOC emissions due to transport and distribution are around 99% of the total. Emissions are calculated starting from methane emissions estimates, considering the annual average percentage of NMVOC in the natural gas distributed in Italy as in Table 3.36. The methodology and references are reported in detail in the NIR (ISPRA, 2020[a]). CH₄, CO₂ and NMVOC emissions have been estimated on the basis of activity data published by industry, the national authority, and information collected annually by the Italian gas operators. Emission estimates take into account the information on: the amount of natural gas distributed supplied by the main national company (SNAM); length of pipelines, distinct by low, medium and high pressure and by type, cast iron, grey cast iron, steel or polyethylene pipelines as supplied by the national authority for the gas distribution (AEEG); natural gas losses reported in the national energy balance; methane emissions reported by operators, in their environmental reports (EDISON, SNAM, ENEL, Italgas). NMVOC and CO₂ emissions have been calculated considering CO₂ content in the leaked natural gas. Regarding exploration and production, an average emission factor, equal to 0.04 g/m3 gas produced, has been estimated on the basis of emission data communicated by the relevant companies for some years and applied to the whole time series.

The average natural gas chemical composition has been calculated from the composition of natural gas produced and imported. Main parameters of mixed natural gas, as calorific value, molecular weight, and density have been calculated as well. Data on chemical composition and calorific value are supplied by the main national gas providers for domestic natural gas and for each country of origin.

The following table shows average data for national pipelines natural gas.

Table 3.36 Average composition for pipelines natural gas and main parameters

	1990	1995	2000	2005	2010	2015	2016	2017	2018
HCV (kcal/m ₃)	9,156	9,193	9,215	9,261	9,325	9,303	9,351	9,340	9,335
NCV (kcal/m ₃)	8,255	8,290	8,320	8,354	8,412	8,391	8,444	8,433	8,428
Molecular weight	17.03	17.19	17.37	17.44	17.46	17.33	17.52	17.43	17.34
Density (kg/Sm ₃)	0.72	0.73	0.74	0.74	0.74	0.73	0.74	0.74	0.73
CH ₄ (molar %)	94.30	94.30	93.36	92.22	92.03	92.72	91.54	92.08	92.64
NMVOC (molar %)	3.45	3.45	4.09	4.84	5.74	5.26	6.17	5.93	5.62
CO ₂ (molar %)	0.22	0.22	0.20	0.18	0.75	0.70	0.65	0.67	0.74
Other no carbon gas (molar %)	2.03	2.03	2.34	2.76	1.48	1.32	1.64	1.33	1.00
CH ₄ (weight %)	88.83	88.83	87.14	85.16	84.54	85.80	83.79	84.71	85.68
NMVOC (weight %)	7.33	7.33	8.62	10.00	11.27	10.34	12.04	11.51	10.87
CO ₂ (weight %)	0.57	0.57	0.51	0.47	1.89	1.78	1.62	1.70	1.88
Other no carbon gas (weight %)	3.27	3.27	3.74	4.37	2.30	2.10	2.56	2.09	1.58

More in details, emissions are estimated separately for the different phases: transmission in primary pipelines and distribution in low, medium, and high pressure network, losses in pumping stations and in reducing pressure stations (including venting and other accidental losses) with their relevant emission factors, considering also information regarding the length of the pipelines and their type.

Emissions from low pressure distribution include also the distribution of gas at industrial plants and in residential and commercial sector; data on gas distribution are only available at an aggregate level thus not allowing a separate reporting. In addition, emissions from the use of natural gas in housing are estimated and included. Emissions calculated are compared and balanced with emissions reported by the main distribution operators. Finally the emission estimates for the different phases are summed and reported in the most appropriate category (transmission/distribution).

Table 3.37 provides the trend of natural gas distribution network length for each pipeline material and the average CH₄ emission factor.

Table 3.37 Length of low and medium pressure distribution network (km) and network emission factors for CH_4 and NMVOC

Material	1990	1995	2000	2005	2010	2015	2016	2017	2018
Steel and cast iron (km)	102,061	131,271	141,848	154,886	198,706	203,116	204,062	204,890	205,273
Grey cast iron (km)	24,164	22,784	21,314	15,080	4,658	2,398	2,163	2,088	2,063
Polyethylene (km)	775	8,150	12,550	31,530	49,663	56,943	57,883	59,368	59,358
Total (km)	127,000	162,205	175,712	201,496	253,027	262,457	264,108	266,346	266,693
CH ₄ EF (kg/km)	1,958	1,417	1,228	1000	719	550	535	532	484
NMVOC EF (kg/km)	162	140	144	127	96	66	77	72	61

3.13.3 Time series and key categories

The trend of fugitive emissions from solid fuels is related to the extraction of coal and lignite that in Italy is quite low. The decrease of NMVOC fugitive emissions from oil and natural gas is due to the reduction of losses for gas transportation and distribution, because of the gradual replacement of old grey cast iron pipelines with steel and polyethylene pipelines for low and medium pressure network as reported in the previous paragraph.

3.13.4 QA/QC and Uncertainty

Different data sources are used for fugitive emissions estimates: official statistics by Economic Development Ministry (MSE, several years [a], [b]), by Transport of Infrastructure Ministry (MIT, several years); national authorities (AEEG, several years; ISTAT, several years [a]), gas operators (ENI, several years; EDISON, several years; SNAM, several years), and industrial association for oil and gas (UP, several years).

CH₄ and NMVOC emissions from transmission and distribution of natural gas are verified considering emission factors reported in literature and detailed information supplied by the main operators (ENI, several years [b]; Riva, 1997).

3.13.5 Recalculation

Minor recalculations occurred in the 2020 submission as a consequence of the update of some activity data and in particular the time series of solid fuels and natural gas consumption from the energy balance data submitted to the OECD/IEA/EUROSTAT Joint Questionnaire by the Ministry of Economic Development.

3.13.6 Planned improvements

No further improvements are planned for this category.

4 IPPU - INDUSTRIAL PROCESSES (NFR SECTOR 2)

4.1 OVERVIEW OF THE SECTOR

Emission estimates in this category include emissions from all industrial processes and also by-products or fugitive emissions, which originate from these processes. Where emissions are released simultaneously from the production process and from combustion, as in the cement industry, they are estimated separately and included in the appropriate categories, in sector 2 and in sector 1 category 1.A.2. This sector makes important contributions to the emissions of heavy metals, PAH, dioxins and PCB.

Regarding emissions of the main pollutants, in 2018, industrial processes account for 12.4% of SO_2 emissions, 0.8% of NO_X , 0.2% of NH_3 , 4.46% of NMVOC and 3.6% of CO. About particulate matter, in 2018 this sector accounts for 8.16% of PM10 emissions and 6.73% of PM2.5. Industrial processes make a significant contribution to the total Italian emissions of heavy metals, despite significant reductions since 1990; particularly this sector accounts for 40.6% of Pb emissions, 29.1% of Cd and 43.0% of Hg. Regarding POPs emissions, 13.9% of PAH total emissions is emitted from industrial processes as well as 32.1% of dioxins and 76.0% of PCB.

In 2018, *iron and steel* sector (2C1) is a key category at level assessment for PM10, PM2.5, Pb, Cd, Hg, PAH, PCDD/F and PCB; emissions from *cement production* (2A1) is a key category source for SO₂ emissions as well as other chemical industry (2B10a). Emissions from *cement production* (2A1) is a key category source for PM10 too. Food and beverage industry (2H2) is a key category for NMVOC emissions and 2G is a key category for PM10, Pb and Cd emissions. In 1990 emissions from *cement production* (2A1) is a key category source for PM10 and PM2.5; *other chemical industry* (2B10a) is a key category for Hg and *iron and steel production* (2C1) is a key category for PM10, PM2.5, Cd, Hg, PAH, PCDD/F and PCB. At trend assessment, *iron and steel* sector is key category for Pb, Cd,Hg, PAH, PCDD/F and PCB while *cement production* is a key category for SO₂ emissions, other chemical industry (2B10a) is a key category for Hgand 2G is a key category for Cd emissions.

4.2 METHODOLOGICAL ISSUES

Methodologies used for estimating emissions from this sector are based on and comply with the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007) and EMEP/EEA guidebook (EMEP/EEA, 2013), the IPCC Guidelines (IPCC, 1997; IPCC, 2006) and the Good Practice Guidance (IPCC, 2000). Included also in this sector are by-products or fugitive emissions, which originate from industrial processes.

There are different sources relevant to estimate emissions from this sector; activity data are provided by national statistics and industrial associations but a lot of information is supplied directly from industry. In fact, as for the energy sector, references derive from data collected in the framework of the national PRTR reporting obligation, the Large Combustion Plant directives and the European Emissions Trading Scheme. Other small plants communicate their emissions which are also considered individually. These processes have improved the efficiency in collecting data and the exchange of information. Whenever data cannot be straight used for the inventory compilation, they are taken into account as verification practice. Environmental Reports published by industrial associations are also considered in the verification process.

4.2.1 Mineral products (2A)

In this sector emissions from the following processes are estimated and reported: cement production and lime production.

Cement production (2A1), is considerable for SO₂ and PM2.5 emissions and accounts for 5.3% and 1.7% of the respective total national emissions in 2018.

During the last 15 years, in Italy, changes in cement production sector have occurred, leading to a more stable structure confirming the leadership for the production in Europe. The oldest plants closed, wet processes were abandoned in favour of dry processes so as to improve the implementation of more modern and efficient technologies. Since 2011 Italy has become the second cement producer country in the EU 28 but the reduction in clinker production seems to have stopped, since 2016 clinker production at national level has kept almost the same. Actually, 19 companies (56 plants of which: 32 full cycle and 24 grinding plants) operate in this sector: multinational companies and small and medium size enterprises (operating at national or only at local level) are present in the country. As for the localization of the operating plants: 39% is in northern Italy, 16% is in the central regions of the country and 45% is in the southern regions and in the islands (Federbeton/AITEC, 2019). In Italy different types of cement are produced; as for 2018 Federbeton/AITEC, the national cement association, has characterised the national production as follows: 70.8% is CEM II (Portland composite cement); 15.8% is CEM I (Portland ordinary cement); 11.0% is CEM IV (pozzolanic cement) and 1.7% is CEM III (blast furnace cement). Clinker production has been decreasing since 2007 but has kept basically the same since 2016; clinker demand in cement production was about 77% in 2018 (production of clinker out of production of cement). To estimate emissions from cement production, activity data on clinker/cement production are used as provided by ISTAT (ISTAT, several years up to 2008), MSE (MSE, several years since 2009 up to 2018) and facility reports in the framework of the Emissions Trading Scheme legislation.

In this category only SO₂ and PM emissions are reported separately from combustion while all the other pollutant emissions are included in the energy sector in 1.A.2f category.

Emission factor for PM10 emissions is equal to 130 g/Mg of cement for the whole time series and is calculated on the basis of plants emission data in the nineties.

Regarding SO₂ emissions, emission factors are derived from activity and emission data supplied directly by the cement facilities in the context of the national PRTR reporting obligation; these figures are available from 2002 and refer both to the combustion and process. In 2003, the total average emission factor derived from the communications by the production plants was equal to 650 g/t of cement produced; this value has been split into 350 g/t for the combustion and 300 g/t for the process in accord with the default EF reported in the 1996 IPCC guidelines. Both these values have been also used for previous years of the time series back to 1995. For the years from 1990 to 1994, the same EF has been used for the combustion process while for estimating emissions from the process an EF equal to 500 g/t, as suggested by the EMEP/CORINAIR Guidebook, has been used in consideration of the S content in the prevalent fuel used in the process (coal) at national scale. From 2004 onwards, the total SO₂ EF from cement production plants has been calculated on the basis of the data reported to the national EPER/E-PRTR register, setting the EF for process at 300 g/t and varying the combustion EF accordingly (EF Tot = EF Proc + EF comb).

The remaining categories of mineral products (*lime production* (2A2)) industry represent less than 1% for each pollutant.

As regards 2A3 category *Glass production*, HM, PM and BC emissions are reported under 1A2f and emission factors have been provided by the research institute of the sectoral industrial association (Stazione Sperimentale del Vetro) distinguished by the different types of glass production. On the basis of the 2017 review process (EEA, 2017 [a]), the previous notation key has been replaced by the IE notation key.

About the 2A5 category, following the suggestions of the NEC review more information has been added but different activities have to be dealt separately. As regards 2A5a *Quarrying and mining of minerals other than coal*, there is no evidence of active mines of the main minerals as those indicated in the Guidebook (bauxite, copper, manganese and zinc). All these mines closed before 1990 for economic reasons. At the same time there is no available data to apply a Tier 1 on other mineral mines. The USGS Mineral yearbook provides info for Italy only for Feldspar, Gypsum, Pumice and Sand and gravel extraction. All the data are estimated and we are verifying the activity level with industry and local competent authorities. Moreover it should be verified if the EFs available in the Guidebook are applicable to these national extractive activities because of the abatement technologies and the kind of mineral. A first rough estimation of emissions, for 2017, results in around 150 Mg of PM2.5, based on Tier 1 approach and USGS activity data which is below the threshold of

significance. As for the category 2A5b Construction and Demolition, no statistical data are available (as annual surfaces) to allow an estimation. Only economic data are provided by the National Institute of Statistics and, as reported in the review report, "The TERT has not been able to assess whether this issue is below or above the threshold of significance for a technical correction, due to the lack of information on activity data provided by the 2016 EMEP/EEA Guidebook and the high variability among countries of the implied emission factors based on socioeconomic variables". Because of that further investigations are under way. For the category 2A5c Storage, Handling and Transport of Mineral Products, PM2.5 emissions have been estimated and reported in the sectoral categories 2A1 Cement Production and 2A2 Lime Production. The emissions from storage, handling and transport for other minerals than the aforementioned ones might not be included in the inventory because this potential under-estimate is likely to be below the threshold of significance.

4.2.2 Chemical industry (2B)

Emissions of this sector derive from organic and inorganic chemicals processes and are usually not significant except for SO_X emissions from the production of sulphuric acid and Hg emissions from chlorine production. Emission factors derive from data collected in the framework of the national EPER/E-PRTR register as well as from EMEP/EEA and EPA Guidebook.

As already mentioned, other chemical industry (2B10a) was key category for Hg emissions in 1990 and for SO_x emissions in 2018. Hg emissions are released from chlorine production facility with mercury cells process (EUROCHLOR, 1998). Total chlorine production in Italy amounted, in 1990, to 1,042,921 tonnes and reduced in 2018 to 257,796 tonnes. Activity production data are supplied by the National Institute of Statistics (ISTAT) and published in the official national statistics and since 2002 data have also been collected at facility level in the national EPER/E-PRTR register. To estimate emissions from 1990 to 2001, the average emission factor supplied by EUROCHLOR for western Europe chlor-alkali production plants (EUROCHLOR, 2001) has been used, while since 2002 emission data have been supplied directly by the production facilities in the framework of the national EPER/E-PRTR. The average emission factor decreased from 1.11 g Hg/t in 2002 to zero in 2018. The reduction observed in emissions for the last years is a consequence of both the conversion of production plants from the mercury cells process to the membrane technology and also the suspension of production at the existing facilities. In 2007 seven facilities carried out the chlor-alkali production: one facility had the membrane process in place, one facility was replacing mercury cells with membrane process while in the other five facilities the production was still based on the mercury cell process (Legambiente, 2007). In 2015 five facilities carried out chlor-alkali production: in four of them the membrane process was in place while one facility still operated the mercury cell process. In 2018 the four chlor-alkali facilities have the membrane process in place while the one with mercury cells was obliged to stop the production with this process it is still in operation but the manufacturing process has been relying on the purchase of the intermediate products.

Emissions from sulphuric acid production, also reported in *other chemical industry* (2B10a) account for 5.5% of total SO_X emissions in 2018. Activity production data are supplied by the National Institute of Statistics (ISTAT) and published in the official national statistics and since 2004 data have also been collected at facility level in the national EPER/E-PRTR register. Emission factors from 1990 to 1994 and from 2002 are derived from emission data supplied directly by the production facilities in the framework of the CORINAIR inventory project and of the national EPER/E-PRTR, respectively.

On the basis of the 2017 review process NOx, SOx, CO, PM and BC emissions from 2B7 *Soda ash production* have been estimated. In Italy there is only one plant producing soda ash and it is in the framework of the EPRTR reporting. In particular, as regards PM emissions, the operator has never reported PM10 emissions which implies that emissions are under the reporting threshold (50 t/year). As reported in the Guidebook measurements made in some plants indicate that more than 75% of the dust emitted is made of particle size $> 10~\mu m$ and that the contribution of PM10 is relatively low. Moreover the operator in its annual environmental report estimates TSP emissions (around 200 t/y) reporting explicitly that no PM10 emissions occur. The achieved estimates, using the EMEP/EEA EFs, produced figures of around 20 Mg (PM10) consistently with respect to the E-PRTR thresholds.

4.2.3 Metal production (2C)

The main activities in this sector are those regarding the *iron and steel* production. The main processes involved in iron and steel production are those related to sinter and blast furnace plants, to basic oxygen and electric furnaces and to rolling mills.

The sintering process is a pre-treatment step in the production of iron where fine particles of metal ores are agglomerated. Agglomeration of the fine particles is necessary to increase the passageway for the gases during the blast furnace process and to improve physical features of the blast furnace burden. Coke and a mixture of sinter, lump ore and fluxes are introduced into the blast furnace. In the furnace the iron ore is increasingly reduced and liquid iron and slag are collected at the bottom of the furnace, from where they are tapped. The combustion of coke provides both the carbon monoxide (CO) needed for the reduction of iron oxide into iron and the additional heat needed to melt the iron and impurities. The resulting material, pig iron (and also scrap), is transformed into steel in subsequent furnaces which may be a basic oxygen furnace (BOF) or electric arc furnace (EAF). Oxygen steelmaking allows the oxidation of undesirable impurities contained in the metallic feedstock by blowing pure oxygen. The main elements thus converted into oxides are carbon, silicon, manganese, phosphorus and sulphur.

In an electric arc furnace steel is produced from polluted scrap. The scrap is mainly produced by cars shredding and does not have a constant quality, even if, thanks to the selection procedures, the scrap quality becomes better year by year. The iron and steel cycle is closed by rolling mills with production of long products, flat products and pipes.

In 1990 there were four integrated iron and steel plants in Italy. In 2018, there are only two of the above mentioned plants, one of which lacks BOF; oxygen steel production represents about 18.4% of the total production and the arc furnace steel the remaining 81.6% (FEDERACCIAI, several years). Currently, long products represent about 46% of steel production in Italy, flat products about 42%, and pipe the remaining 12%. Most of the flat production derives from only one integrated iron and steel plant while, in steel plants equipped with electric ovens almost all located in the northern regions, long products are predominantly produced (e.g carbon steel, stainless steels) and seamless pipes (only one plant) (FEDERACCIAI, several years).

Basic information for *Iron and steel production* derives from different sources in the period 1990-2018. Activity data are supplied by official statistics published in the national statistics yearbook (ISTAT, several years) and by the sectoral industrial association (FEDERACCIAI, several years).

For the integrated plants, emission and production data have been communicated by the two largest plants for the years 1990-1995 in the framework of the CORINAIR emission inventory, distinguished by sinter, blast furnace and BOF, and by combustion and process emissions. From 2000 production data have been supplied by all the plants in the framework of the ETS scheme, for the years 2000-2004 disaggregated for sinter, blast furnace and BOF plants, from 2005 specifying carbonates and fuels consumption. For 2002-2015 data have also been supplied by all the four integrated iron and steel plants in the framework of the EPER/E-PRTR registry but not distinguished between combustion and process. National experts have also been involved in the process of elaboration of the "monitoring and control plan" for the largest integrated plant in Italy in the framework of the IPPC permit. Qualitative information and documentation available on the plants allowed reconstructing their history including closures or modifications of part of the plants; additional qualitative information regarding the plants, collected and checked for other environmental issues or directly asked to the plant, permitted to individuate the main driving of the emission trends for pig iron and steel productions. Emissions from lime production in steel making industries are reported in 1A2f Manufacturing Industries and Construction category.

In 2018, *iron and steel sector* (2C1) is key category for PM10, PM2.5, Pb, Cd, Hg, PAH, PCDD/F and PCB. In Table 4.1 relevant emission factors are reported.

Table 4.1 Emission factors for iron and steel for the year 2018

		PM10 [g/Mg]	PM2.5 [g/Mg]	Cd [mg/Mg]	Hg [mg/Mg]	Pb [mg/Mg]	PCB [mg/Mg]	PAH [mg/Mg]	PCDD/F [μg T-eq/Mg]
Blast furnace charging		60	37.5						
Pig iron tapping		41.4	25.9	0.3	0.3	15		950	
Basic oxygen	Areal	62	54.3	25	3	850	3.6		
furnace	Point	122	106.8	25	3	850	3.6		
Electric arc furnace		124	108.5	50	150	3450	3.6	1.9	4.45
Rolling mills	Areal	59	45.9					125	
Rolling lillis	Point	28.2	21.9					125	
Sinter plant (except combustion)	Areal	16	12.8						
	Point	6.0	4.8						

PM10 emission factors for integrated plants derive from personal communication of the largest Italian producer of pig iron and steel (ILVA, 1997) while PM10 emission factor for electric arc furnace derives from a sectoral study (APAT, 2003). The Emission factors manual PARCOM-ATMOS (TNO, 1992), the EMEP/Corinair Guidebook (EMEP/CORINAIR, 2006) and the IPPC Bref Report (IPPC, 2001) provide emission factors for heavy metals while a sectoral study (APAT, 2003) provides Cd emission factors for electric arc furnace.

Regarding POPs emissions, emission factors usually originate from EMEP/CORINAIR (EMEP/CORINAIR, 2007, EMEP/CORINAIR, 2006) except those relating to PAH and PCDD/PCDF from electric arc furnace that derive from direct measurements in some Italian production plants (ENEA-AIB-MATT, 2002). Dioxin emissions for sinter plant, and other sources within steelworks manufacturing oxygen steel occur during the combustion process and they are measured at the stack; emissions are therefore reported in the energy sector in 1.A.2a category. In 2018 the average emission factor is equal to 0.13 micrograms TEQ per Mg of sinter produced. EF is calculated yearly on the basis of measurements done in the two existing sinter plant in Italy. As regards HCB emissions, Italy reports HCB emissions from sintering production calculated with the 2006 Guidebook ("Sources of HCB emissions.pdf" no distinguish between combustion and process) EF=0,032mg/Mg in 1A2a because in this case HCB emissions are clearly linked to the combustion activities. The 2016 Guidebook is referred to the 2006 version.

As for other iron and steel activities, a series of technical meetings with the most important Italian manufacturers was held in the framework of the national PRTR in order to clarify methodologies for estimating POPs emissions. In the last years, a strict cooperation with some local environmental agencies allowed the acquisition of new data, the assessment of these data is still ongoing and improvements in emission estimates are expected for the next years. Thanks to the last review process in the framework of the NEC Directive (EEA, 2019) fugitive PAH emissions from coke oven (door leakage and extinction) have been estimated on the basis of 2019 EMEP/EEA Guidebook emission factors. At the moment, these emissions are reported in 2C because the estimates have been carried out in the framework of industrial processes but in the next submission will be reported in 1B1b adopting the right allocation.

Emission factors used in 1990 estimates generally derive from Guidebook EMEP/CORINAIR.

The remaining categories of metal production industry represent about 0% for each pollutant because of the shutdown of several plants, in particular those linked to the non ferrous production. As discussed during the recent review process (EEA, 2018), indeed, no plants for aluminium production by electrolysis work in

Italy from 2012 and pollutants time series are reported, obviously, from 1990 to 2012. PCDD/Fs emissions occur almost exclusively from secondary aluminium production and are consequently linked to the combustion process and reported in 1A2b. More, HCB emissions from secondary aluminium production are not reported because these emissions derive from the degassing of aluminium when hexachloroethane is used, but this compound is banned in Italy from '90s (notation key used: NA).

As for the production of lead, zinc and copper (2C5, 2C6 and 2C7a categories), at the moment SO_X, HM and PM emissions are reported in the energy sector because up to now there was no information to distinguish between energy and process emissions and, above all, these processes are considered combustion processes with contact, consequently, emissions are dependent on the combustion process. In the last year, thanks to the ETS data, it has been possible to separate CO₂ emissions in these two components and Italy is investigating the possibility of extension to other pollutants for the next submissions. In particular, in Italy no production of primary copper has ever occurred while, as regards lead and zinc, there is a sole integrated plant for the primary productions, and this makes it difficult to ensure a good breakdown. Consequently, the issue related to the allocation of emissions is not only about combustion and process but also about the different productions of different metals in the same factory. To resolve this issue, an in-depth investigation has been started with the aim to better specify the technology used also taking advantage of the E-PRTR reporting channel. Anyway, for Pb, Cd and PCB the notation key IE has been added in the NFR because of the relevant emissions are reported in the energy sector. Moreover in response to the review process Italy explained that the Hg emission factor for copper production in the EMEP/EEA Guidebook 2019 is not applicable because it refers to primary copper production while in Italy copper production between 1990 and 1998 was derived only from secondary technologies.

4.2.4 Other production (2G - 2H - 2L)

In 2H sector, non-energy emissions from *pulp and paper* as well as *food and drink* production, especially wine and bread, are reported. Lead emissions from *batteries manufacturing* can be found in 2L sector. 2G sector includes NMVOC emissions due to the *use of lubricants* as well as all potential emissions from the *use of tobacco and fireworks*.

Emissions from these categories are usually negligible except NMVOC emissions from *food and drink* (2H2) accounting for 2.4% of the national total in 2018. Emissions from this category refer to the processes in the production of bread, wine, beer and spirits. Activity data are derived from official statistics supplied by the National Institute of Statistics (ISTAT) and relevant industrial associations. Time series of bread production is reconstructed for the '90 years on the basis of family surveys from the national Institute of statistics (ISTAT) while from 1998 data are those reported in the PRODCOM statistics officially communicated by ISTAT to EUROSTAT. PRODCOM data collection has improved along the years producing more reliable figures. In the '00 years, bread production has changed from fresh artisanal production to a more industrial oriented production, without any impact on the total. For wine, beer and spirits the statistical information on activity data is much more reliable and their trends are driven by the seasonal variation (for wine) or market demand (for beer) while for spirits it is mostly driven by a change in the personal habits and relative consumptions. Emission factors are those reported in the EMEP/CORINAIR guidebook and, in lack of national information, they are assumed constant for the whole time series (CORINAIR, 1994; EMEP/CORINAIR, 2006).

Pulp and paper industry (2H1) referred to the acid sulphite and neutral sulphite semi-chemical processes up to 2007 and only to the neutral sulphite semi-chemical process for 2008 and 2009, while the kraft process was not present in Italy. Emissions of NO_X, NMVOC, SO_X and PM were estimated for those years on the basis of activity data provided by the two Italian production plants. In 2008 the bleached sulphite pulp production stopped and in 2009 the neutral sulphite semi-chemical pulp process plant also closed. So, for the IPPU inventory purposes, there was no production of pulp and paper after 2009 and consequently no emissions have been estimated. Acid sulphite process emissions are calculated for SO_X, NMVOC and NO_X on the basis of EFs available in the Best Available Techniques Reference Documents report (Bref report), for PM10 on the basis of EF in the USEPA Guidebook (54% PST) while for PM2.5 and BC emission profiles reported in the EMEP/EEA 2016 Guidebook (Table 3.3) have been used. For neutral sulphite semi-chemical process the emission factors used through the time period referred for SO_X, NMVOC and NO_X to CORINAIR 1992, EMEP/CORINAIR Guidebook, and for NO_X, from 1996, data were communicated by the operator of the plant.

NMVOC emissions include emissions from chipboard production where activity data are those in the FAOSTAT database for particle board and the emission factor 500 g/Mg product is from "Corinair 1992 Default Emission Factors Handbook".

Regarding 2G category (*other product use*) all potential emissions have been estimated both for the use of tobacco and fireworks; as compared last year submissions were only NMVOC were estimated, SO_X, NO_X, CO, NH₃ Cd, Pb, PM10, PM2.5, PCDD, Benzo(a)pyrene and PAH have been also included.. For activity data, as regards fireworks a consumption of 15,000 Mg of explosives (as resulting by an Italian reference of 2004) has been assumed, for tobacco data on consumption were collected from the Ministry of Health, observatory of tobacco smoking. Emission factors are those reported in the EMEP/EEA 2019 Guidebook. In 2L category lead emissions from batteries manufacturing are reported. Activity data are provided by the non-ferrous metal industrial association (ASSOMET) and refer to the amount of lead used for the batteries production; the emission factor has been provided by the relevant industrial association (ANIE) calculated on the basis of average lead concentration to the chimney, equal to 0,2 mg/Nmc, the average flow (equal to 15 Nmc/h/tonnes Pb) and the annual number of hours.

4.3 TIME SERIES AND KEY CATEGORIES

The following sections present an outline of the main key categories, and relevant trends, in the industrial process sector. Table 4.2 reports the key categories identified in the sector.

Table 4.2 Key categories in the industrial processes sector in 2018

	2A1 %	2A2	2B1	2B2	2B3	2B6	2B7	2B10a	2C1	2C2	2G	2H1	2H2	2L
SO _x	5.25		0.010			0.22	0.14	5.52	1.27		0.04			
NO _x			0.04	0.04	0.003	0.005	0.01	0.28	0.38		0.02			
NH ₃			0.001	0.000			0.12	0.03			0.08			
NMVOC			0.01					0.21	0.36		1.33	0.14	2.41	
CO			0.005				0.42	0.69	2.28		0.20			
PM10	2.54	0.67				0.002	0.01	0.22	2.82		1.87		0.01	
PM2.5	1.75	0.17				0.002	0.01	0.11	2.87		1.81			
BC	0.41	0.001				0.000	0.002	0.02	0.11					
Pb									34.04		5.49			1.07
Cd								0.94	20.89		7.25			
Hg								-	43.05					
PAH									13.92		0.01			
Dioxin									32.12		0.00			
НСВ														
PCB									76.02					

Note: key categories are shaded in blue

There is a general reduction of emissions in the period 1990 - 2018 for most of the pollutants due to the implementation of different directives at European and national level. A strong decrease is observed especially in the chemical industry due to the introduction of relevant technological improvements.

4.3.1 Mineral products (2A)

As mentioned above, PM10 emission factor for cement production is set constant from 1990 to 2018 while SO_2 emission factor reduced from 1990 to 1995 and is set constant in the subsequent years. Consequently, the trends of SO_2 and PM10 emissions follow that of the activity data.

In Table 4.3, activity data, SO₂ and PM10 emissions from cement production are reported.

Table 4.3 Activity data, SO₂ and PM10 emissions from cement production, 1990 – 2018 (Gg)

	1990	1995	2000	2005	2010	2015	2016	2017	2018
Activity data [Gg]	42,414	35,432	41,119	47,291	34,283	20,825	19,325	19,305	19,300
SO ₂ emissions (Gg)	21.2	10.6	12.3	14.2	10.3	6.2	5.8	5.8	5.8
PM10 emissions [Gg]	5.5	4.6	5.3	6.1	4.5	2.7	2.5	2.5	2.5

4.3.2 Chemical industry (2B)

Other chemical industry (2B10a) was a key category for Hg emissions in 1990 and for SO_x in 2018 and for Cd and Hg at trend assessment. Hg emissions refer to chlorine production with mercury cells process; in Table 4.4, activity data and Hg emissions from chlorine production are reported. As reported in paragraph 4.1, to estimate emissions from 1990 to 2001, the average emission factor supplied by EUROCHLOR for western Europe chlor-alkali production plants has been used, while from 2002 emission data have been supplied directly from the production plants in the framework of the national EPER/E-PRTR reporting obligation. The average emission factor decreased from 1.11 g Hg/t in 2002 to zero in 2018. The reduction observed in Hg emissions for the last years is a consequence of the conversion of production plants from the mercury cells process to the membrane technology but it depends also on suspensions of production processes at some facilities.

Table 4.4 Activity data and Hg emissions from chlorine production, 1990 – 2018

	1990	1995	2000	2005	2010	2015	2016	2017	2018
Activity data [Gg]	1.043	869	786	535	258	279	298	226	221
Hg emissions [Mg]	3	2	1	0,48	0,12	0,16	0,05	0,04	0,03

 SO_X emissions are prevalently from carbon black production. Sulphuric acid production, titanium oxide, other sulphate and phthalic anhydride productions are other sources reported in 2B10a and emitting SO_X . Activity data and emission factors for these sources are collected at plant level on annual basis.

4.3.3 Metal production (2C)

Emission trend of HMs, PCB and PCDD/PCDF is driven mainly by the electric arc furnaces iron and steel production which increased from 15.1 Mt in 1990 to 19.6 Mt in 2008; in 2009, because of the economic crisis, steel production from electric arc has decreased substantially and since 2010 the production has increased again.

In Table 4.5, activity data and HM, PCB and PCDD/PCDF emissions from electric arc furnace (EAF) and from the whole sector 2C1 are reported, but dioxins emissions from sinter plant are reported in the energy sector in 1.A.2f category. In 2018 average emission factor is equal to 0.13 micrograms TEQ per Mg of sinter produced. EF is calculated yearly on the basis of measurements done in the two existing sinter plant in Italy.

Table 4.5 Activity data and HMs, PCB and PCDD/PCDF emissions from	om electric arc furnace	, 1990 – 2018
--	-------------------------	---------------

	1990	1995	2000	2005	2010	2015	2016	2017	2018
Steel production EAF [kt]	15,102	16,107	15,879	17,661	17,115	17,255	17,704	19,336	19,983
Cd emissions EAF [Mg]	1.1	1.1	0.8	0.9	0.9	0.9	0.9	1.0	1.0
Cd emissions 2C1 [Mg]	1.3	1.4	1.1	1.2	1.1	1.0	1.0	1.1	1.1
Hg emissions EAF [Mg]	2.3	2.4	2.4	2.6	2.6	2.6	2.7	2.9	3.0
Hg emissions 2C1 [Mg]	2.3	2.5	2.4	2.7	2.6	2.6	2.7	2.9	3.0
Pb emissions EAF [Mg]	52.1	55.6	54.8	60.9	59.0	59.5	61.1	66.7	68.9
Pb emissions 2C1 [Mg]	61.1	65.7	64.1	71.0	66.5	63.7	66.0	70.8	72.9
PCB emissions EAF [kg]	54.4	58.0	57.2	63.6	61.6	62.1	63.7	69.6	71.9
PCB emissions 2C1 [kg]	91.7	100.0	95.8	105.7	92.7	79.3	84.1	86.6	88.2
PCDD/F emissions EAF [g T-eq]	67.2	71.7	70.7	78.6	76.2	76.8	78.8	86.0	88.9
PCDD/F emissions 2C1 [g T-eq]	67.2	71.7	70.7	78.6	76.2	76.8	78.8	86.0	88.9

For Pb and Hg, the same EFs have been used for the whole time series (derived by the EMEP/CORINAIR Guidebook), while for Cd a national emission factor, equal to 50 mg/t, was available thanks to a sectoral study (APAT, 2003) and refers to the years after 1997.

This study shows range < 1-54 mg/t and the value set to 50 mg/t was chosen for conservative reason being more consistent with the old one; this value should include technology progresses occurred in the iron and steel production activities in those years. Lacking information for the years backwards, the default CORINAIR EF was used.

For PCB and PCDD/Fs, emission factors are constant from 1990 to 2018 and emission trends are ruled by the activity data.

For SO₂ and PM emissions from lead, zinc and copper production they are included and reported in the energy relevant sector. In Italy there is a sole integrated plant for the primary production of zinc and lead and this makes it difficult to ensure a good breakdown between the energy and the process sectors and the activities. During the latest year more information about the plant has been supplied taking advantage of a direct contact with the facility through the E-PRTR registry but it was not sufficient to split the emissions.

Following the decision 2012/17 of the Executive Body of the Convention on Long Range Transboundary Air Pollution, that requests Italy to submit information concerning the status and details of its work to improve the emission inventory of PAH, Italy in recent years has reviewed the estimates regarding PAH major sources.

In the 2013 submission different recalculations have been performed in the energy and waste sector, emissions from iron and steel production have been revised in the 2014 submission. The most important update regards pig iron tapping emission factor that considers, from 2000 onwards, the abatement due to fabric filters and the relevant EF derived from the Guidebook EMEP/CORINAIR 2006 (0.95 g/Mg). Investigations on the largest integrated plant in Italy confirmed the installation of fabric filters on each point of emission related to pig iron tapping (MATTM, 2011). As regards EAF too, EF was update on the basis of a sectoral study (APAT, 2003) which reports the development of abatement technologies in the '90s in Italy and the consequent evolution in the plants with the installation of fabric filters; but in this case the update is referred to 1990-1999 because the EF used in previous submissions concerned already abated emissions.

In Table 4.6, activity data and PAH emissions from integrated plants and from the whole sector 2C1 are reported.

Table 4.6 Steel production data and PAH emissions from integrated plants, 1990 – 2018

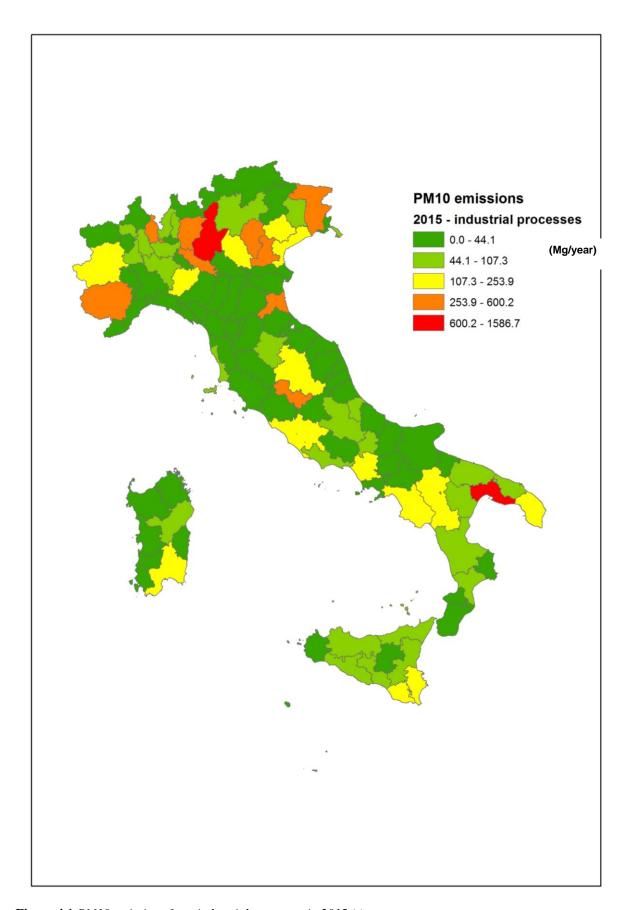
	1990	1995	2000	2005	2010	2015	2016	2017	2018
Pig iron production [Gg]	11,852	11,678	11,209	11,424	8,555	5,051	6,054	5,071	4,845
Steel production BOF [Gg]	10,365	11,664	10,744	11,688	8,635	4,763	5,669	4,732	4,520
PAH emissions i.p.* [Mg]	41.9	41.3	11.7	12.1	9.2	5.8	6.8	5.8	5.6
PAH emissions 2C1 [Mg]	44.9	44.5	14.3	15.1	11.9	8.2	9.4	8.5	8.3

^{*}i.p.: integrated plants

4.3.4 Other production (2G - 2H - 2L)

Emissions from these categories are usually negligible except for NMVOC emissions from *food and drink* (2H2) accounting for 2.4% of the national total. Emissions from this category refer to the processes in the production of bread, wine, beer and spirits. Emission factors are assumed constant for the whole time series. In Table 4.7, activity data and NMVOC emissions from sector 2H2 are reported.

Table 4.7 Activity data and NMVOC emissions from sector 2H2, 1990 – 2018


	1990	1995	2000	2005	2010	2015	2016	2017	2018
Activity data - Bread [Gg]	4,153	3,882	3,565	4,109	4,161	3,841	3,668	3,846	3,257
Activity data – Wine [10 ⁶ dm ³]	5,521	5,620	5,409	5,057	4,673	5,073	5,414	4,610	5,660
Activity data – Beer [10^6 dm ³]	1,215	1,199	1,258	1,280	1,281	1,429	1,452	1,560	1,640
Activity data – Spirits [10 ⁶ dm ³]	268	232	206	161	115	98	100	101	100
NMVOC emissions [Gg]	31.7	29.2	26.8	27.5	25.9	24.1	23.6	24.1	22.0

4.4 QA/QC AND VERIFICATION

Activity data and emissions reported under EU-ETS and the national EPER/EPRTR register are compared to the information provided by the industrial associations. The general outcome of this verification step shows

consistency among the information collected under different legislative frameworks and information provided by the relevant industrial associations.

Every five years emissions are disaggregated at regional and provincial level and figures are compared with results obtained by regional bottom up inventories. PM10 emissions disaggregated at local level are also used as input for air quality modelling. The distribution of PM10 emissions from the *industrial processes* sector at NUTS3 level for 2015 is reported in Figure 4.1; methodologies are described in the relevant publication (ISPRA, 2009).

Figure 4.1 *PM10 emissions from industrial processes in 2015 (t)*

4.5 RECALCULATIONS

4.5.1 Mineral industry (2A)

Recalculations occur because of the update of PM10 emission factor for cement process on the basis of the EMEP/EEA Guidebook according to the review process.

4.5.2 Metal industry (2C)

Recalculations occur because of estimates of PAH emissions from coke oven door leakage currently in industrial processes, resulting in an increase of emissions equal to 8% and 12% in 1990 and 2018 respectively. As above reported these emissions are still reported under 2C and will be reported in 1B1b in the next submission.

4.6 PLANNED IMPROVEMENTS

Following the suggestions of the last review in the framework of NEC Directive (EEA, 2017 [a]), further investigations are under way for the categories 2A5a and 2A5b regarding reliable activity data.

Activities 2C5, 2C6 and 2C7 are under investigations to allocate emissions between combustion and process.

5 IPPU - SOLVENT AND OTHER PRODUCT USE (NFR SECTOR 2)

5.1 OVERVIEW OF THE SECTOR

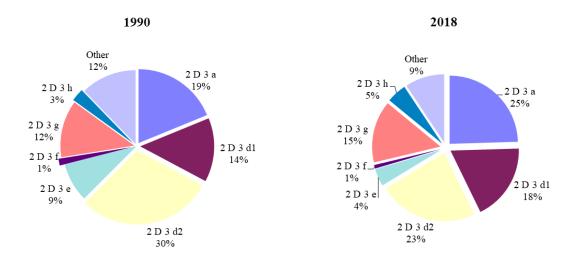
In this sector all non-combustion emissions from other industrial sectors than manufacturing and energy industry are reported.

Emissions are related to the use of solvent in paint application, degreasing and dry cleaning, chemical products, manufacture and processing and other solvent use, including emissions from road paving with asphalt and asphalt roofing activities.

NMVOC emissions are estimated from all the categories of the sector as well as PM for polyester and polyvinylchloride processing, in the chemical product category, and for asphalt processes and PAH emissions from the preservation of wood in the other solvent use.

The categories included in the sector are specified in the following.

- 2D3a Domestic solvent use includes emissions from the use of solvent in household cleaning and car care products as well as cosmetics.
- 2D3b Road paving with asphalt includes emissions from the production and use of asphalt for road paving.
- 2D3c Asphalt roofing includes emissions from the manufacturing of roofing products and the blowing of asphalt.
- 2D3d1 Decorative coating includes emissions from paint application for construction and buildings, domestic use and wood products.
- 2D3d2 Industrial coating includes emissions from paint application for manufacture of automobiles, car repairing, coil coating, boat building and other industrial paint application.
- 2D3e Degreasing includes emissions from the use of solvents for metal degreasing and cleaning.
- 2D3f Dry cleaning includes emissions from the use of solvent in cleaning machines.
- 2D3g Chemical products, manufacture and processing covers the emissions from the use of chemical products such as polyurethane and polystyrene foam processing, manufacture of paints, inks and glues, textile finishing and leather tanning.
- 2D3h Printing includes emissions from the use of solvent in the printing industry
- 2D3i Other product use addresses emissions from glass wool enduction, printing industry, fat, edible and non-edible oil extraction, preservation of wood, application of glues and adhesives, vehicles dewaxing.


According to the review process we are still exploring if Hg emissions from fluorescent tubes occur in Italy. No other emissions from the sector occur.

NMVOC emissions from 2D3a, 2D3d, 2D3g and 2D3i are key categories in 2018; the same categories, plus 2D3e, were also key categories in 1990. For the trend 1990-2018, 2D3e and 2D3h result as key categories.

The sector accounts, in 2018, for 39.8% of total national NMVOC emissions, whereas in 1990 the weight out of the total was equal to 30.6%. Total sectoral NMVOC emissions decreased by 41.4%, between 1990 and 2018.

PM emissions account for 1.15%, while PM2.5, BC and PAH emissions are also estimated but they account for less than 1%.

In Figure 5.1 the share of NMVOC emissions of the sector is reported for the years 1990 and 2018.

Figure 5.1 *Share of NMVOC emissions for the solvent use sector in 1990 and 2018*

5.2 METHODOLOGICAL ISSUES

The sector is characterized by a multitude of activities which implies that the collection of activity data and emission factors is laborious. A lot of contacts have been established in different sectors with industrial associations and documentation has been collected even though improvements are still needed especially in some areas.

Emissions of NMVOC from solvent use have been estimated according to the methodology reported in the EMEP/EEA guidebook, applying both national and international emission factors (Vetrella, 1994; EMEP/CORINAIR, 2007; EMEP/EEA, 2016). Country specific emission factors provided by several accredited sources have been used extensively, together with data from the national EPER/PRTR registry; in particular, for paint application (Offredi, several years; FIAT, several years), solvent use in dry cleaning (ENEA/USLRMA, 1995), solvent use in textile finishing and in the tanning industries (Techne, 1998; Regione Toscana, 2001; Regione Campania, 2005; GIADA, 2006). Basic information from industry on percentage reduction of solvent content in paints and other products has been applied to EMEP/EEA emission factors in order to evaluate the reduction in emissions during the considered period.

A more detailed description is reported for the 2018 key categories of NMVOC emissions in the following sections.

5.2.1 Domestic solvent use (2D3a)

The category comprises a lot of subcategories whose emissions, specifically NMVOC, originate from the use of solvent in household cleaning and car care products as well as cosmetics.

Emissions from this category have been calculated using a detailed methodology, based on VOC content per type of consumer product. Emissions from domestic solvent use comprise emissions from the use of products for household and cleaning and for cosmetics which are derived as described in the following.

Activity data

Activity data are expressed as the sum, in tonnes, of household and cleaning products and cosmetics.

Household and cleaning products: data are communicated by the National Association of Detergents and Specialties for industry and home care (Assocasa, several years) either by personal communications or Association Reports and refer to the consumption of soaps and detergents and cleaning and maintenance products.

Cosmetics: data are the sum of cosmetics products in aerosol form and other cosmetics.

Figures of cosmetics in aerosol form are provided by the Italian Aerosol Association (AIA, several years [a] and [b]) and refer to the number of pieces of products sold for personal care (spray deodorants, hair styling foams and other hair care products, shaving foams, and other products). These figures are then converted in tonnes by means of the capacity of the different cosmetics containers.

Figures for other cosmetics products are derived by the Production Statistics Database (Prodcom) supplied by the National Institute of Statistics (ISTAT, several years [a] and [b]) by difference with the previous aerosol data.

Time series of cosmetics production is reconstructed by means of the annual production index, considering the year 2000 as the base year because this is the year where production national statistics and Prodcom data coincide. The next step is the calculation of apparent consumption taking into account import-export data derived by the National Association of Cosmetic Companies (UNIPRO, several years). Since these figures also include aerosol cosmetics, the amount of aerosol cosmetics is subtracted.

Final consumption is therefore estimated.

Emission factors

NMVOC emission factors are expressed in percentage of solvent contained in products.

Household and cleaning products: figures are communicated by the relevant industrial association, ASSOCASA, by personal communications. For leather, shoes, wood etc. and car maintenance products, figures are taken from BiPro Association. For insecticides and disinfectants, emission factors derive from national studies at local level.

Cosmetics: for aerosol cosmetics, the emission factor is communicated by the Italian Aerosol Association for the year 2004 and supposed constant from 1995. For other cosmetics, information from BiPro has been considered (EC report 'Screening study to identify reductions in VOC emissions due to the restrictions in the VOC content of products', year 2002 (EC, 2002)), and supposed constant from 1996.

5.2.2 **Decorative coating (2D3d1)**

The category includes NMVOC emissions from the application of paint for construction and buildings, domestic use and wood products.

Activity data on the consumption of paint for construction and buildings and related domestic use are provided by the Ministry of Productive Activities for 1990 and 1991 (MICA, 1999) and updated on the basis of production figures provided annually by the National Institute of Statistics (ISTAT, several years [a] and [b]).

From 2007 onwards, data are also provided by SSOG (Stazione Sperimentale per le industrie degli Oli e dei Grassi, *Experimental Station for Oils and Fats Industries*), which collects information and data regarding national production and imports for paint categories set out in the directive 2004/42/EC on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products. The purpose of this directive is to limit the total content of VOCs in certain paints and varnishes and vehicle refinishing products in order to prevent or reduce air pollution resulting from the contribution of VOCs to the formation of tropospheric ozone. The directive sets maximum VOCs content limit values for some paints and varnishes.

As for emission factors, those for construction and buildings are taken from the EMEP/EEA guidebook and are considered constant till 2009, whereas the default values for domestic use vary in consideration of the different share between solvent and water content in paint throughout the years. In particular, the variation of emission factor from 1990 to 2000 is equal to 35%-65% up to 25%-75% in 2000, on the basis of qualitative information supplied by industry on the increase of water based paints products in the market. From 2010, emission factors are calculated taking into account maximum VOC content limit values for paint and varnishes set out in Annex II A of Directive 2004/42/EC and data collected by SSOG. The comparison of national emission estimates for this category with those produced by IIASA for 2010 resulted in similar values.

On the other hand, information on activity data and emission factors for emissions from wood products are provided by the national association of wood finishing (Offredi, several years). Emission factors have been calculated for 1990, 1998 and 2003 on the basis of information provided by the industrial association distinguishing the different type of products which contain different solvent percentages. Data have been supplied also for the years 2005 and 2006. Actually, we are keeping constant the 2006 value unless the association provides us with updated information. For previous years, values have been interpolated.

In this category, emissions from paint application in wood are one of the biggest contributors to national NMVOC emissions and the relevant share has grown considerably in recent years. NMVOC emissions due to the use of paint and other products except from industrial coating could not be controlled properly in the past since the EU Directive 2004/42/EC entered into force. This directive, transposed into the Italian legislation in 2004, sets out maximum VOC content for many paint, varnishes and vehicle refinishing products that had to be achieved in two steps. The early limit values, to be respected from 2007 till 2009, did not lead to a significant reduction of NMVOC emissions, while the latest values, that had to be respected from 2010 onwards, brought to a significant decrease.

5.2.3 Industrial coating (2D3d2)

The category includes emissions from paint application for manufacture of automobiles, car repairing, coil coating, boat building and other industrial paint application.

Activity data on the number of vehicles are provided by the National Automobile Association (ACI, several years) in the Annual Statistical Report and the emission factors are those reported by the main automobile producers on the relevant activity in their environmental reports and communicated from 2003 in the framework of E-PRTR.

For the paint used in car repairing, activity data are provided by the Ministry of Productive Activities for 1990 and 1991 (MICA, 1999) and updated on the basis of production figures provided annually by the National Institute of Statistics (ISTAT, several years [a] and [b]). The default emission factor (provided by the EMEP guidebook) used from 1990 to 1995 equal to 700 g/kg paint is also confirmed by the European guidelines for car repairing provided by the Conseil European de l'Industrie des Peintures (CEPE, 1999). The reduction of the emission factor in 1999 (13% of 1995) is applied on the basis of information on different shares between solvent and water based paint throughout the years provided by the national study PINTA, *Piano nazionale di tutela della qualità dell'aria* (ENEA, 1997). From 1996 to 1999 the reduction is linear. From 1999 to 2006 the value is kept constant. From 2007 onwards emission factors have been calculated taking into account the maximum VOC content limit values for paint and varnishes set out in Annex II B of Directive 2004/42/EC and data collected by SSOG. The Italian implied emission factor is the weighted average of the different products used in this activity where data are collected at detailed level and communicated within the European Directive. The trend is driven by the increase in the last years of the use of primers and special finishes. Similar trend is noted for the construction and building and domestic paints where the variability is mainly due to the percentage of solvent based paint product used out of the total paints.

Concerning coil coating, boat building and other industrial paint application, activity data are provided by the Ministry of Productive Activities for 1990 and 1991 (MICA, 1999) and updated annually by the National Institute of Statistics (ISTAT, several years [a] and [b]). Emission factors are taken from the EMEP guidebook considering the national legislation where relevant.

Emission factors of the other industrial paint application from 1990 to 1995 are constant and derive from the 1999 EMEP/CORINAIR guidebook. The reduction of the emission factor from 1996 to 2004 is applied on

the basis of information on different share of paints throughout the years provided by the national study PINTA. From 2010, the value of the 1999 Guidebook has been chosen considering the further reduction of the sector (in PINTA, the reduction for 2005 with respect to 1995 is equal to 37%, and for 2010 64%; considering the default emission factor 250 g/kg of paint, the reduction is equal to 53%).

NMVOC emissions from this category have been decreasing constantly since the nineties, when all industrial installations have been subjected to permits from local authorities. Since then, most of the installations have to comply with emission limit values and technological requirements imposed at regional level, taking into account the EU directives on industrial emissions (i.e. Directive 99/13/EC on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations (EC, 1999)) and often going beyond the European legislation.

With regard to car repairing the emission cut from 2007 onwards is mainly due to the maximum contents of VOC set by EU Directive 2004/42/EC (EC, 2004).

5.2.4 **Degreasing (2D3e)**

NMVOC emissions have been estimated for this category. The emission factor used (1000 g NMVOC/Mg solvent) and refers to the percentage of NMVOC emitted per tones of solvent used and it is not directly comparable to those provided in the Guidebook (700g/kg cleaning product). According to the information provided by the National Industrial Association, due to technological improvements, the amount of solvent used in the products decreased during the period whereas it has been assumed that the percentage of NMVOC emissions remains constant. The EF used in the inventory comes from the "Corinair 1992 Default Emission Factors Handbook" but taking in consideration the comments from the last reviews it has not been assumed that around 10% of the solvent remains in the product or is destroyed; so the Ef has been changed from 900 to 1000 g NMVOC/Mg solvent. Activity data, solvent used, are also provided by the relevant industrial association (Federchimica, several years). According to the review process we are verifying how to apply the emission factors available in the EMEP/EEA Guidebook that refers to the volumes of cleaning products used instead of the solvent used.

5.2.5 **Dry cleaning (2D3f)**

Concerning dry cleaning, activity data, equal to 30,000 machines, remain unchanged throughout the time series and the emission factor is calculated based on the allocation of machines to closed-circuit (CCM) and open-circuit (OCM). Different amounts of solvent are used in these machines and have different emission factors. The emission factors are calculated assuming that in 1990 the closed-circuit machines were 60%, 90% in 1995 and in up to 100% in 1999.

The average consumption of solvent per machine is equal to 258 kg/year for CCM and 763 kg/year for OCM, as derived from a national study by ENEA/USL-RMA (ENEA/USL-RMA, 1995). It is assumed that only perchlorethylene is used. These values are multiplied by the emission factors of the Guidebook EMEP, referred to the amount of solvent consumed (equal to 0.4 and 0.8 kg/kg of solvent, for CCM and OCM, respectively) and then the average annual emission factor was calculated based on the percentage distribution of closed and open circuit machines.

5.2.6 Chemical products, manufacture and processing (2D3g)

The category comprises emissions from the use of chemical products such as polyester, polyurethane, polyvinylchloride and polystyrene foam processing, manufacture of paints, inks and glues, textile finishing and leather tanning.

Activity data for polystyrene and polyurethane are derived from the relevant industrial associations, and ISTAT (ISTAT, several years [a] and [b]), whereas emission factors are from the EMEP/CORINAIR guidebook. For what concerns polyurethane, the relevant national industrial association has communicated that the phase out of CFC gases occurred in the second half of nineties and the blowing agent currently used

is penthane. Because of manufacturing plant have abatement system in place PM emissions could all be considered as PM2.5.

As for polyvinylchloride (PVC), activity data and emission factors are supplied in the framework of the national PRTR. NMVOC emissions are entirely attributed to the phase of PVC production; no use of solvents occurs in the PVC processing. This information has been provided by the relevant industrial plant, EVC Italy, in 2001. Because of manufacturing plant have abatement system in place PM emissions could all be considered as PM2.5.

For the other categories, activity data are provided by the relevant industrial associations and by ISTAT, while emission factors are taken from the EMEP/CORINAIR guidebook considering national information on the solvent content in products supplied by the specific industrial associations.

As regard rubber processing, emission factors for the first years of nineties have been provided by the industrial association. The use of the Swedish emission factor from 1997 was justified in lack of other updated data.

For the glues manufacturing category, emission factors for 1990 are derived from the 1992 EMEP/CORINAIR guidebook. The trend of emission factor is estimated on the basis of the trend of the emission factor for consumption of glue (as indicated by the industrial association). From 1995 to 2004, the industrial association communicated data on consumption and solvent content by product. The reductions from 2000 are based on the assumptions of PINTA. From 2004 the emission factor has been assumed constant in lack of updated information. For previous years, values have been interpolated.

As regards leather tanning, emission factor for 1990 is from Legislative Decree 152/2006, equal to the maximum VOC content limit value (150 g/m2). For 2000 and 2003, emission factors have been calculated on the basis of emission figures derived by the national studies on the major leather tanning industries and statistical production.

As regards asphalt blowing and possible PAH and Benzo(a)pyrene emissions as suggested by the 2016 EMEP/EEA Guidebook, according to the relevant industrial association PAH emissions are negligible because all the asphalt blowing plants have abatement filter system of PM and afterburners of gas. Moreover these plants should respect national environmental legislation not exceeding at the stack more than 0.1mg/Nm^3 for total PAH. For this pollutant the relevant notation key NE has been used.

5.2.7 Other product use (2D3i)

The category includes NMVOC emissions from the application of glues and adhesives, which account for most of emissions from the category, emissions from fat, edible and non edible oil extraction and minor emissions from glass wool enduction.

Activity data and emission factors for the application of glues and adhesives had been provided by the relevant industrial association up to 2004. After that period, activity data have been updated on the basis of information by ISTAT (ISTAT, several years [a] and [b]) whereas the emission factor is considered constant in absence of further information.

For fat, edible and non edible oil extraction activity data derive from the FAOSTAT database (http://faostat.fao.org) whereas default emission factors do not change over the period.

5.3 TIME SERIES AND KEY CATEGORIES

The sector accounts, in 2018, for about 39.8% of total national NMVOC emissions. PM, BC and PAH emissions are also estimated in this sector but they account for less than 1%.

NMVOC emissions from the use of solvent decreased from 1990 to 2018 of about 41.4%, from 610 Gg in 1990 to 367 Gg in 2018, mainly due to the reduction of emissions in paint application, in degreasing and dry

cleaning and in other product use. The general reduction observed in the emission trend of the sector is due to the implementation of the European Directive 1999/13/EC (EC, 1999) on the limitation of emissions of volatile organic compounds due to the use of organic solvents, entered into force in Italy in January 2004, and the European Directive 2004/42/EC (EC, 2004), entered in force in Italy in March 2006, which establishes a reduction of the solvent content in products. Moreover, the reduction of emissions from paint application, is also due to the implementation of the Italian Legislative Decree 161/2006.

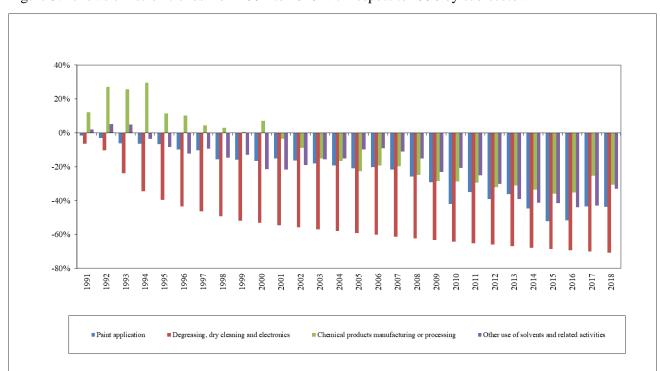


Figure 5.2 shows emission trends from 1991 to 2018 with respect to 1990 by sub-sector.

Figure 5.2 Trend of NMVOC emissions from 1991 to 2018 as compared to 1990

The main source of emissions is *paint application* (2D3d) where NMVOC emissions derive mainly from wood application and construction and building. The second source of emissions is *domestic solvent use* (2D3a), mostly for the consumption of cosmetics, followed by *chemical products and other product use* (2D3g), especially for emissions deriving from polyurethane processing, paints manufacturing and leather tanning.

Table 5.1 represents the pollutants estimated in the sector and the key categories identified.

	2D3a	2D3b	2D3c	2D3d	2D3e	2D3f	2D3g	2D3h	2D3i
SO _x									
NO_x									
NH ₃									
NMVOC	9.79	0.78	0.00	16.67	1.64	0.34	5.87	1.88	2.91
CO									
PM10		1.11	0.03				0.01		
PM2.5		0.18	0.01				0.01		
BC		0,08	0,00						
Pb									
Cd									
Hg									

 Table 5.1
 Key categories in the IPPU - Solvent and other product use sector in 2018

	2D3a	2D3b	2D3c	2D3d	2D3e	2D3f	2D3g	2D3h	2D3i
PAH									
Dioxin									
HCB									
PCB									

Note: key categories are shaded in blue

In Table 5.2 and 5.3 activity data and emission factors used to estimate emissions from the sector are reported at SNAP code level.

A strong decrease in the content of solvents in the products in the nineties is observed.

			1990	1995	2000	2005	2010	2015	2016	2017	2018
06 01	Paint application										
06 01 01	Paint application: manufacture of automobiles	vehicles	2.865.857	2.521.355	2.770.104	1.766.930	1.310.425	1.326.711	1.433.047	1.499.956	1.424.861
06 01 02	Paint application : car repairing	Mg paint	22.250	17.850	24.276	23.475	19.479	25.395	32.521	35.217	38.728
06 01 03	Paint application: construction and buildings (except item 06.01.07)	Mg paint	111.644	120.736	125.928	163.455	168.358	158.661	159.823	157.265	161.199
06 01 04	Paint application : domestic use (except 06.01.07)	Mg paint	420.000	420.000	420.000	420.000	420.000	420.000	420.000	420.000	420.000
06 01 05	Paint application : coil coating	Mg paint	14.500	14.500	14.500	14.500	14.500	14.500	14.500	14.500	14.500
06 01 06	Paint application : boat building	Mg paint	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000
06 01 07	Paint application : wood	Mg paint	150.000	150.000	140.000	140.000	123.250	80.000	75.000	80.000	75.000
	Other industrial paint application	Mg paint	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000	125.000
06 02	Degreasing, dry cleaning and electronics										
06 02 01	Metal degreasing	Mg solvents	52.758	32.775	25.895	22.237	19.095	16.398	15.906	15.429	14.966
06 02 02	Dry cleaning	machines	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000
06 03	Chemical products manufacturing or processing										
06 03 01	Polyester processing	Mg product	179.852	197.882	168.704	112.188	89.638	94.389	96.522	109.510	109.510
06 03 02	Polyvinylchloride processing	Mg product	617.600	575.600	405.285	348.497	0	0	0	0	0
06 03 03	Polyurethane processing	Mg product	145.700	230.633	350.187	175.278	196.585	196.585	196.585	196.585	196.585
06 03 04	Polystyrene foam processing (c)	Mg product	85.004	80.400	90.200	35.200	33.692	46.800	36.200	51.200	44.100
06 03 05	Rubber processing	Mg product	671.706	700.859	810.124	831.187	607.667	545.989	557.079	613.364	631.709
06 03 06	Pharmaceutical products manufacturing	Mg product	80.068	88.094	104.468	106.861	110.183	120.907	126.068	131.052	137.321
06 03 07	Paints manufacturing	Mg product	697.129	747.417	900.683	964.631	891.882	851.450	770.497	940.682	905.943
06 03 08	Inks manufacturing	Mg product	87.527	110.667	132.256	132.521	133.979	108.600	102.949	92.708	115.533
06 03 09	Glues manufacturing	Mg product	111.683	266.169	302.087	331.770	317.560	249.152	259.393	242.425	279.154
06 03 10	Asphalt blowing	Mg product	77.248	70.336	77.408	88.896	65.000	25.000	21.000	20.000	20.000
06 03 12	Textile finishing	1000 m2	1.332.679	1.301.105	1.173.047	987.705	831.236	631.573	643.518	612.500	614.774
06 03 13	Leather tanning	1000 m2	173.700	183.839	200.115	157.891	186.824	162.500	169.668	244.724	173.387
06 04	Other use of solvents and related activities										
06 04 01	Glass wool enduction	Mg product	105.029	119.120	139.421	129.958	115.332	86.929	86.498	87.208	98.805
06 04 02	Mineral wool enduction	Mg product	0	11.000	18.000	20.500	0	0	0	0	0
06 04 03	Printing industry	Mg ink	73.754	91.667	100.690	111.550	98.206	79.604	79.106	79.142	98.626
06 04 04	Fat, edible and non edible oil extraction	Mg product	5.070.398	7.560.387	6.539.796	7.939.548	7.088.890	6.123.425	5.275.878	5.463.622	5.463.622
06 04 05	Application of glues and adhesives	Mg product	98.500	234.751	266.996	292.687	280.150	219.801	228.836	213.866	246.269
06 04 08	Domestic solvent use (other than paint application)(k)	Mg product	1.938.779	2.282.020	2.410.338	2.767.759	2.614.274	2.265.605	2.226.736	2.248.707	2.367.054
06 04 09	Vehicles dewaxing	vehicles	2.540.597	1.740.212	2.361.075	2.238.344	1.972.070	1.594.259	1.849.608	1.994.407	1.945.120

 Table 5.2 Activity data in the IPPU - Solvent and other product use sector

			1990	1995	2000	2005	2010	2015	2016	2017	2018
06 01	Paint application										
06 01 01	Paint application : manufacture of automobiles	g/vehicles	8.676	6.296	4.833	4.065	2.854	3.037	3.080	3.023	2.870
06 01 02	Paint application : car repairing	g/Mg paint	700.000	700.000	605.500	605.500	497.810	617.377	587.616	567.101	551.450
06 01 03	Paint application: construction and buildings (except item 06.01.07)	g/Mg paint	300.000	300.000	300.000	300.000	200.000	152.412	149.364	222.552	222.552
06 01 04	Paint application: domestic use (except 06.01.07)	g/Mg paint	126.450	113.100	99.750	99.750	67.710	54.360	54.360	75.720	73.050
06 01 05	Paint application : coil coating	g/Mg paint	200.000	200.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000
06 01 06	Paint application : boat building	g/Mg paint	750.000	750.000	622.500	475.417	340.000	340.000	340.000	340.000	340.000
06 01 07	Paint application : wood	g/Mg paint	446.500	425.000	406.300	390.750	377.250	354.000	342.500	340.000	339.500
	Other industrial paint application	g/Mg paint	530.000	530.000	439.900	337.583	250.000	250.000	250.000	250.000	250.000
06 02	Degreasing, dry cleaning and electronics										
06 02 01	Metal degreasing	g/Mg solvents	1.000.000	1.000.000	1.000.000	1.000.000	1.000.000	1.000.000	1.000.000	1.000.000	1.000.000
06 02 02	Dry cleaning	g/machines	306.000	154.000	103.000	103.000	103.000	103.000	103.000	103.000	103.000
06 03	Chemical products manufacturing or processing										
06 03 01	Polyester processing	g/Mg product	325	325	325	325	325	325	325	325	325
06 03 02	Polyvinylchloride processing	g/Mg product	0	0	0	0	0	0	0	0	0
06 03 03	Polyurethane processing	g/Mg product	120.000	110.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000
06 03 04	Polystyrene foam processing (c)	g/Mg product	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000
06 03 05	Rubber processing	g/Mg product	12.500	10.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
06 03 06	Pharmaceutical products manufacturing	g/Mg product	55.000	55.000	55.000	55.000	55.000	55.000	55.000	55.000	55.000
06 03 07	Paints manufacturing	g/Mg product	15.000	15.000	15.000	13.110	10.863	9.524	11.134	10.175	10.769
06 03 08	Inks manufacturing	g/Mg product	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000
06 03 09	Glues manufacturing	g/Mg product	20.000	5.041	3.603	2.806	2.806	2.806	2.806	2.806	2.806
06 03 10	Asphalt blowing	g/Mg product	544	544	544	544	544	544	544	544	544
06 03 12	Textile finishing	g/1000 m2	296	296	296	296	296	296	296	296	296
06 03 13	Leather tanning	g/1000 m2	150.000	150.000	125.000	105.378	82.267	71.000	71.000	71.000	71.000
06 04	Other use of solvents and related activities										
06 04 01	Glass wool enduction	g/Mg product	800	800	800	800	800	800	800	800	800
06 04 02	Mineral wool enduction	g/Mg product	300	300	300	300	300	300	300	300	300
06 04 03	Printing industry	g/Mg ink	234.649	228.190	184.332	174.227	174.227	174.227	174.227	174.227	174.227
06 04 04	Fat, edible and non edible oil extraction	g/Mg product	790	704	706	691	700	700	722	700	700
06 04 05	Application of glues and adhesives	g/Mg product	600.000	151.230	108.086	84.190	84.190	84.190	84.190	84.190	84.190
06 04 08	Domestic solvent use (other than paint application)(k)	g/Mg product	60.117	52.262	42.356	46.153	42.172	34.483	32.598	33.802	37.755
06 04 09	Vehicles dewaxing	g/vehicles	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

 Table 5.3
 Emission factors in the IPPU - Solvent and other product use sector

5.4 QA/QC AND VERIFICATION

Data production and consumption time series for some activities (paint application in constructions and buildings, polyester processing, polyurethane processing, pharmaceutical products, paints manufacturing, glues manufacturing, textile finishing, leather tanning, fat edible and non edible oil extraction, application of glues and adhesives) are checked with data acquired by the National Statistics Institute (ISTAT, several years [a], [b] and [c]), the Sectoral Association of the Italian Federation of the Chemical Industry (AVISA, several years) and the Food and Agriculture Organization of the United Nations (FAO, several years). For specific categories, emission factors and emissions are also shared with the relevant industrial associations; this is particularly the case of paint application for wood, some chemical processes and anaesthesia and aerosol cans.

In the framework of the MeditAIRaneo project, ISPRA commissioned to Techne Consulting S.r.l. a survey to collect national information on emission factors in the solvent sector. The results, published in the report "Rassegna dei fattori di emissione nazionali ed internazionali relativamente al settore solventi" (TECHNE, 2004), have been used to verify and validate emission estimates. In 2008, ISPRA commissioned to Techne Consulting S.r.l. another survey to compare emission factors with the last update figures published in the EMEP/CORINAIR guidebook (EMEP/CORINAIR, 2007). The results are reported in "Fattori di emissione per l'utilizzo di solventi" (TECHNE, 2008) and have been used to update emission factors for polyurethane and polystyrene foam processing activities.

In addition, for paint application, data communicated from the industries in the framework of the EU Directive 2004/42, implemented by the Italian Legislative Decree 161/2006, on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products have been used as a verification of emission estimates. These data refer to the composition of the total amount of paints and varnishes (water and solvent contents) in different subcategories for interior and exterior use and the total amount of products used for vehicle refinishing and they are available from the year 2007.

Verifications of the emissions from the sector occurred in 2012, on account of the bilateral independent review between Italy and Spain and the revision of national estimates and projections in the context of the National emission ceilings Directive for the EU Member States and the Gothenburg Protocol of the Convention on Long-Range Transboundary Air Pollution (CLRTAP). The analysis by category did not highlight the need of major methodological revisions of the sector; an additional source of emissions was added affecting only NMVOC emissions.

Furthermore, every five years ISPRA carries out emission estimates at NUTS level which is the occasion of an additional check with local environmental agencies.

The distribution of NMVOC emissions from the *solvent and other product use* sector at NUTS3 level for 2015 is reported in Figure 5.3; methodologies are described in the relevant publication (ISPRA, 2009).

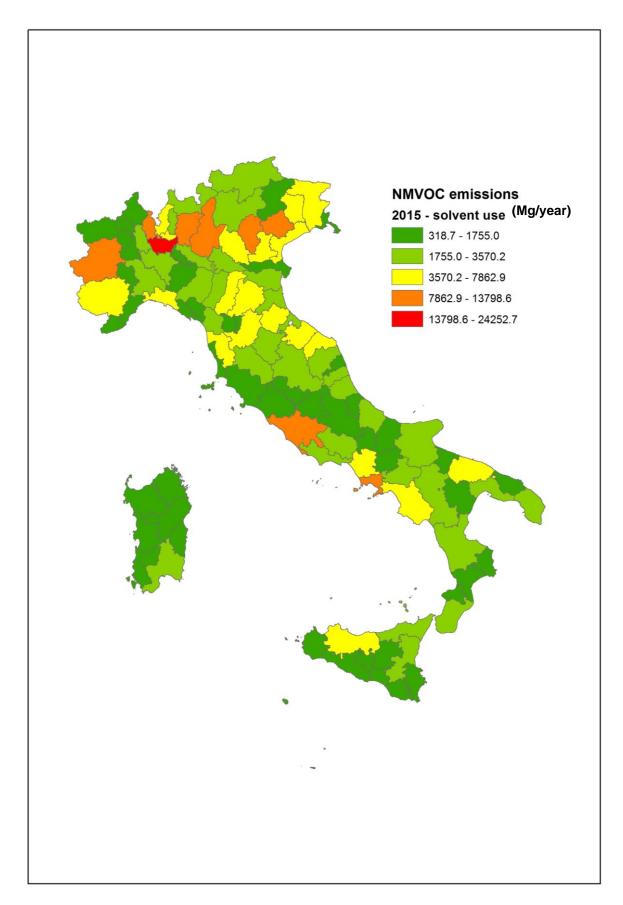


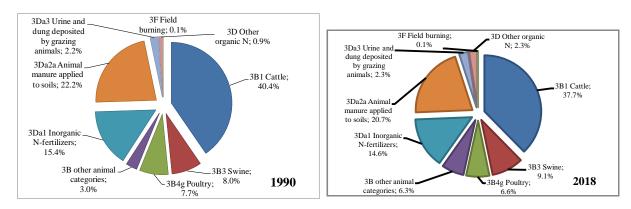
Figure 5.3 NMVOC emissions from solvent and other product use in 2015 (t)

5.5 RECALCULATIONS

Minor recalculations occurred because of activity data in the manufacture of automobiles and the update of the NMVOC emission factor for metal degreasing.

5.6 PLANNED IMPROVEMENTS

Specific developments will regard the improvement of emission factors for some relevant categories. In particular, several improvements are planned with the aim to update the status of technologies in this sector where main challenges regard the availability of data collected from the industry. Main focus will be on metal degreasing and leather production where the EFs used need to be updated.


6 AGRICULTURE (NFR SECTOR 3)

6.1 OVERVIEW OF THE SECTOR

The agriculture sector is responsible for the largest part of NH₃ emissions, and contributes also to PM10, PM2.5, BC, TSP, NO_X, NMVOC, CO, SO₂, heavy metals (As, Cr, Cu, Ni, Se, Zn, Pb, Cd, Hg), Dioxins, PAH and HCB emissions. Italy estimates agricultural emissions for manure management (3B), agricultural soils (3D) including the use of pesticides, and field burning of agricultural wastes (3F). NO_X emissions are reported as NO₂.

In 2018, key categories level was identified for NH₃ emissions (3B1a, 3B1b, 3B3, 3B4gii, 3Da1 and 3Da2a), for NMVOC emissions (3B1a, 3B1b and 3Da2a), for NO_X emissions (3Da2a), for PM10 emissions (3Dc) and for HCB emissions (3Df). In 1990 similar figures were obtained except for NH₃ emissions 3B4gii, for NMVOC emissions 3Da2a and NO_X emissions which were not key categories and PM10 emissions 3B4gii which were key categories. For the trend analysis, key categories were related to NH₃ emissions (3B1a, 3B1b, 3B4a, 3B4gi, 3B4gii, 3Da1, 3Da2a and 3Da2c), NO_X emissions (3Da2a), NMVOC emissions (3B1a and 3B1b), PM10 emissions (3Dc) and HCB (3Df).

In 2018, NH₃ emissions from the agriculture sector were 345.0 Gg (94.2% of national emissions) where 3B, 3D and 3F categories represent 56.3%, 37.8% and 0.1% of total national emissions. The trend of NH₃ from 1990 to 2018 shows a 23.4% decrease due to the reduction in the number of animals, the diffusion of best environmental practices in manure management in relation to housing, storage and land spreading systems, the decrease of cultivated surface/crop production and use of N-fertilisers. A representation of the contribution by source of agriculture NH₃ emissions for 1990 and 2018 is shown in Figure 6.1.

Figure 6.1 Share of NH₃ emissions in the agriculture sector for 1990 and 2018

Agricultural official statistics are mainly collected from the National Institute of Statistics, ISTAT. Most important activity data (number of animals, N-fertilizers, agricultural surface and production, milk production) are available on-line: http://agri.istat.it/jsp/Introduzione.jsp. ISTAT has a major role in the comprehensive collection of data through structural (such as the Farm Structure Survey, FSS) and conjunctural surveys, and the general agricultural census\(^1\). For consistency reasons the same agricultural official statistics are used for UNFCCC and UNECE/CLRTAP emission inventory.

ISPRA participates to the Agriculture, Forestry, and Fishing Quality Panel, which has been established to monitor and improve national statistics. This is the opportunity to get in touch with experts from the

¹ The last census was conducted in 2010 and data are available at the link http://dati-censimentoagricoltura.istat.it/

Agriculture Service from ISTAT in charge for main agricultural surveys. In this way, data used for the inventory is continuously updated according to the latest information available.

Agricultural statistics reported by ISTAT are also published in the European statistics database ² (EUROSTAT). The verification of statistics is part of the QA/QC procedures; therefore, as soon as outliers are identified ISTAT and category associations are contacted.

In Table 6.1 the time series of animal categories is shown.

Table 6.1 Time series of animals

	Dairy cattle	Non-dairy cattle	Buffalo	Sheep	Goats	Horses	Mules/a	Swine	Rabbits	Poultry	Fur animal s
Year						heads					
1990	2,641,755	5,110,397	94,500	8,739,253	1,258,962	287,847	83,853	6,949,091	14,893,771	173,341,562	325,121
1995	2,079,783	5,189,304	148,404	10,667,971	1,372,937	314,778	37,844	6,625,890	17,110,587	184,202,416	220,000
2000	2,065,000	4,988,000	192,000	11,089,000	1,375,000	280,000	33,000	6,828,000	17,873,993	176,722,211	230,000
2005	1,842,004	4,409,921	205,093	7,954,167	945,895	278,471	30,254	7,484,162	20,504,282	178,430,413	200,000
2010	1,746,140	4,086,317	365,086	7,900,016	982,918	373,324	46,475	7,588,658	17,957,421	175,912,339	125,000
2011	1,754,981	4,142,544	354,402	7,942,641	959,915	373,327	50,966	7,602,093	17,549,225	177,876,150	160,000
2012	1,857,004	3,885,606	348,861	7,015,729	891,604	395,913	59,865	7,254,621	17,465,477	176,599,128	165,000
2013	1,862,127	3,984,545	402,659	7,181,828	975,858	393,915	63,166	7,111,607	16,548,690	181,307,019	170,000
2014	1,830,990	3,925,080	369,349	7,166,020	937,029	390,886	67,016	7,269,295	16,435,598	179,763,191	175,000
2015	1,826,484	3,954,864	374,458	7,148,534	961,676	384,767	70,872	7,266,945	15,760,502	183,077,679	180,000
2016	1,821,764	4,108,003	385,121	7,284,874	1,026,263	388,324	74,215	7,102,896	15,207,274	191,239,266	160,000
2017	1,791,120	4,158,273	400,792	7,215,433	992,177	367,561	72,455	7,185,630	14,000,931	186,291,367	180,000
2018	1,693,332	4,229,872	401,337	7,179,158	986,255	367,561	72,455	7,085,003	12,089,836	179,662,390	145,000

As for poultry, since no annual statistics on the number of animals are available, the following methodology was followed. For 1990 the ISTAT data from the Agricultural Census have been used; for the years 1991-1999, the number of heads was estimated on the basis of the annual decreases/increases in the production of heads and meat supplied by UNA (National Union of Poultry, which later became UNAITALIA); for 2000 and 2010 ISTAT data from the Censuses of Agriculture for laying hens and broilers were used; in the intermediate years between 2000 and 2010, the number of heads was estimated assuming a linear trend; after 2010, the data were estimated on the basis of UNAITALIA data; for 2013, the FSS ISTAT survey was used for laying hens (and the survey broilers figure is very similar to the estimated figure); for the other poultry category, since 1998 the data have been estimated on the basis of UNAITALIA data. Data on turkeys derive from the ISTAT statistics on the Census and the FSS survey.

In Table 6.2 the nitrogen content of N-fertilisers by type applied to soils is shown together with the differentiated EFs. Detailed figures for "other nitrogenous fertilizers" are reported from 1998 because disaggregated official statistics from ISTAT were available only from that year (ENEA, 2006).

Table 6.2 *Time series of N content by fertilisers and relevant emission factors*

Type of	Emission	1990	1995	2000	2005	2010	2015	2016	2017	2018
fertilizers	factor				Nitroge	n content (t N	yr-1)			
Ammonium sulphate Calcium	8%	50,762	61,059	36,698	27,855	32,568	16,986	18,064	16,174	16,624
cyanamide Nitrate (*)	1% 1%	3,310 157,221	507 189.907	3,003 164,134	2,357 167.872	4,958 72,833	3,046 91,357	2,803 79,753	2,958 79,717	2,696 88,281
Urea	13%	291,581	321,196	329,496	317,814	209,829	266,154	321,594	261,767	241,209
Other nitric nitrogen Other	1%	-	-	3,204	5,219	3,332	1,189	1,513	1,001	1,221
ammoniacal nitrogen	1%	-	-	6,278	18,069	12,412	7,035	8,423	6,868	7,460

² http://ec.europa.eu/eurostat/data/database

Ī

Type of	Emission	1990	1995	2000	2005	2010	2015	2016	2017	2018
fertilizers	factor				Nitroge	n content (t N	yr-1)			
Other amidic										
nitrogenous	13%	-	_	6,988	17,420	15,366	11,796	18,246	19,944	17,982
Phosphate										
nitrogen	6%	112,237	99,468	77,916	69,758	45,837	35,054	33,240	42,937	35,555
Potassium										
nitrogen	2%	3,937	2,876	5,291	12,289	15,955	9,077	13,361	10,503	10,751
NPK										
nitrogen	6%	138,018	101,528	113,897	106,384	64,462	50,174	49,829	47,416	45,749
Organic										
mineral	1%	444	20,960	38,688	34,809	19,085	25,986	20,385	33,555	27,477
Total		757,509	797,500	785,593	779,846	496,637	517,854	567,211	522,840	495,005

^(*) includes ammonium nitrate < 27% and ammonium nitrate > 27% and calcium nitrate

6.2 METHODOLOGICAL ISSUES

Methodologies used for estimating national emissions from this sector are based on and conform to the *EMEP/EEA Guidebook* (EMEP/EEA, 2016; EMEP/EEA, 2019), the 2006 IPCC Guidelines (IPCC, 1997; IPCC, 2006) and the IPCC Good Practice Guidance (IPCC, 2000). Consistency among methodologies for the preparation of the agricultural emission inventory under the UNFCCC and UNECE/CLRTAP is guaranteed through an operational synergy for activity data collection, inventory preparation and reporting to international conventions and European Directives. Information reported in the National Inventory Report/Common Reporting Format (NIR/CRF) for the GHG inventory is coherent and consistent with information reported in the Informative Inventory Report/Nomenclature for Reporting (IIR/NFR).

Factor 1.214 (= 17/14) was used to convert ammonia nitrogen to ammonia and factor 3.286 (= 46/14) was used to convert nitrous nitrogen to nitrogen dioxide.

6.2.1 Manure management (3B)

For 3B category, Italy has estimated emissions for pollutants recommended in the 2019 EMEP/EEA Guidebook (NH₃, NO_X, NMVOC, PM10 and PM2.5). A detailed and updated description of the methodologies for the estimation of NH₃ emissions, as well as of national specific circumstances and reference material, is provided in sectoral reports (APAT, 2005; Cóndor *et al.*, 2008; Cóndor, 2011), and in the NIR (ISPRA, several years [a]). Detailed information on activity data sources, methods and EFs by pollutant for 3B category is shown in Table 6.3.

Table 6.3 Activity data sources, methods and emission factors by pollutant for manure management

NFR code	Animal category	Method	Activity data	Emission Factor
3B1a, 3B1b	Cattle	T2 (NH ₃ , NOx, NMVOC), T1 (PM10, PM2.5)	NS	CS (NH ₃ , NOx), D (PM10, PM2.5), T2 (NMVOC)
3B4a, 3B2, 3B4d, 3B4e, 3B4f	Buffalo, Sheep, Goats, Horses, Mules and Asses	T2 (NH ₃ , NOx, NMVOC), T1 (PM10, PM2.5)	NS, IS	CS (NH ₃ , NOx), D (PM10, PM2.5), T2 (NMVOC)
3B3	Swine	T2 (NH ₃ , NOx, NMVOC), T1 (PM10, PM2.5)	NS	CS (NH ₃ , NOx), D (PM10, PM2.5), T2 (NMVOC)
3B4gi, 3B4gii, 3B4giii 3B4giv	Poultry	T2 (NH ₃ , NOx, NMVOC), T1 (PM10, PM2.5)	AS	CS (NH ₃ , NOx), D (PM10, PM2.5), T2 (NMVOC)

3B4h Other T2 (NH ₃ , NOx, NMVOC), T1 (PM10, NS PM2.5)	CS (NH ₃ , NOx), D S (PM10, PM2.5), T2 (NMVOC)
---	---

NS=national statistics; IS= International statistics (FAO); AS= category association statistics (UNAITALIA); CS=country-specific; D=Default (from guidebook)

Concerning the 3B category, the estimation procedure for NH₃ emissions consists in successive subtractions from the quantification of nitrogen excreted annually for each livestock category. This quantity can be divided in two different fluxes, depending on whether animals are inside (housing, storage and manure application) or outside the stable (grazing). More in detail, part of the nitrogen excreted in housing volatilizes during the settle of manure in the local farming and it is calculated with the relevant emission factor in housing for the different livestock; this amount is therefore subtracted from the total nitrogen excreted to derive the amount of nitrogen for storage. During storage another fraction of nitrogen is lost (calculated with the relevant emission factor for storage), which is then subtracted to obtain the amount of nitrogen available for the agronomic spreading. Losses occurring during the spreading are finally calculated with the specific emission factor for spreading. For the nitrogen excreted in the pasture losses due to volatilization calculated with the relevant emission factor for grazing by livestock only occur at this stage (CRPA, 2006[a]).

The manure application source is reported in 3Da2a *Animal manure applied to soils* and the animal grazing source is reported in 3Da3 *Urine and dung deposited by grazing animals*.

As regards the animal grazing, the percentage of grazing animals is equal to (CRPA, 1997, CRPA, 2006[a]): 5% for dairy cattle, 2.2% for other cattle, 2.9% for buffalo, 60% for equines, 90% for sheep and goats.

The excretion rates (CRPA, 2006[a]; GU, 2006; Xiccato *et al.*, 2005), slurry/solid manure production and average weights (CRPA, 2006[a]; GU, 2006; Regione Emilia Romagna, 2004) were updated with country specific information. Other improvements of country specific EFs were obtained with research studies (CRPA, 2006 [a], [b], CRPA, 2010[b]). Average weight and N excretion rate for NH₃ estimations are reported in Table 6.4.

Table 6.4 Average weight and nitrogen excretion rates from livestock categories in 2018

C-4	Weight	Housing	Grazing	Total
Category	kg	kg N head ⁻¹ yr ⁻¹		
Non-dairy cattle	387.8	51.01	1.44	52.45
Dairy cattle	602.7	122.75	6.46	129.22
Buffalo	509.9	58.62	1.75	60.37
Other swine (*)	88.1	13.45	-	13.45
Sow (*)	172.1	28.53	-	28.53
Sheep	46.9	1.62	14.58	16.20
Goats	44.8	1.62	14.58	16.20
Horses	550.0	20.00	30.00	50.00
Mules and asses	300.0	20.00	30.00	50.00
Poultry	1.9	0.49	-	0.49
Rabbit	1.6	1.02	_	1.02
Fur animals	1.0	4.10	-	4.10

^(*) Other swine and sows are sources that represent the 'swine' category

6.2.1.1 Dairy cattle (3B1a)

As regards 3B1a (dairy cattle) in Table 6.5 the animal waste management system (AWMS) distribution and EFs used are reported. EF was multiplied by the percentage of the nitrogen excreted in housing equal to 95% of the total, assuming that 5% is excreted in grazing. The value is a weighted average based on country specific emission factors and the distribution of livestock housing has been assumed in the following main housing systems reported in Table 6.5 (based on an 1998 CRPA survey carried out in Lombardy, Emilia Romagna and the centre of Italy and on ISTAT statistics of 2003 and on 2010 Agricultural Census). Between 2005 and 2010

a gradual transition to the updated distribution of housing systems has been assumed for the intermediate years taking in account the gradual penetration of systems to ensure animal welfare.

Table 6.5 AWMS distribution and EF by manure management system for the dairy cattle category

Emission factors by manure management					
system	1990	2003	2005	2010	2013
Housing					
cubicle house : 14.3 N-NH ₃ kg/head/year (Bonazzi	14.60/	1.4.50/	1.4.60/	27.004	27.00
et al, 2005)	14.6%	14.6%	14.6%	27.9%	27.9%
loose housing on bedding: 15.7 N-NH ₃	9.2%	9.2%	9.2%	42.60/	12.60/
kg/head/year (Bonazzi et al, 2005)	9.2%	9.2%	9.2%	42.6%	42.6%
tied cows: 12.9 N-NH ₃ kg/head/year (Bonazzi et	76.00	76.00	76.20	20.50/	20.5%
al, 2005)	76.2%	76.2%	76.2%	29.5%	29.5%
EF N-NH ₃ kg/head/year	13.4	13.4	13.4	14.5	14.5
Storage					
	liquid manure				
liquid manure	= 36%	-	-	-	= 45%
Tanks (for liquid manure): 23% of N at storage					
(Bonazzi et al, 2005)	40.0%	75.5%	75.5%	82.3%	70.1%
Lagoons (for liquid manure): 32.2%					
(multiplication factor equal to 1.4 respect to tanks)	50.0%	12.5%	12.5%	2.5%	1.7%
covered storage (for liquid manure): 4.6%					
(reduction of 80% compared to tanks)	10.0%	12.5%	12.5%	15.2%	28.3%
solid storage: 14.2% of N at storage (Regione	solid manure				
Emilia Romagna, 2001)	= 64%	= 64%	= 64%	= 55%	= 55%

As regards the manure storage (see Table 6.5), emission factors are expressed as a percentage of the nitrogen contained in manure to storage. Emission factors used for tanks is derived from national literature (Bonazzi et al, 2005) and emission factors for lagoons and covered storage have been estimated applying an increase (for lagoons) and a reduction (for covered storage) to tanks EF (as referenced in CRPA, 2006[a] and CRPA, 2006[b]).

The proportion of liquid system (considering liquid system= liquid system + digesters) and solid storage (considering solid storage= solid storage + digesters), reported in the CRF (*Common Reporting Format* for the GHG inventory) refer to the nitrogen excreted and not to the amount of animal waste. The proportion reported in the Table 6.5 refer to the manure production according to the type of housing.

EFs for lagoons and covered storage have been provided by CRPA (CRPA, 2006[a]). For lagoons, they have a high exposure area relative to their capacity and represent a higher emission type than the tank. Considering the volumes of the two types of storage, an increase in the surface of slurry in the lagoons with respect to the tanks can be estimated equal to 40%. Since ammonia emissions are estimated to be proportional to the surface of slurry exposed to air, emissions from lagoons will be approximately 40% higher than those of the tanks (CRPA, 1997). For covered storage, the emission reduction has been assumed on the basis of the ILF-BREF document (EC, 2003) with regards the covered storage (CRPA, 2006[a]).

A linear emission reduction in the period 1990-2003 has been estimated to assess the dynamics of evolution of storage systems from the values available in 1990 and 2003, as reported by CRPA (CRPA, 2006[a]). In 2003 respect to 1990 an increase of storage in tanks with respect to lagoons as well as a small increase of covered storage is observed as available in the Table 6.5. On the basis of ISTAT statistics on storage systems as 2010 Agricultural Census and 2013 Farm Structure Survey, an update of emission factors from manure storage for cattle category has been estimated. A gradual transition to the updated emission factors has been assumed for the intermediate years (for the period 2005-2010 and 2010-2013) taking in account the gradual penetration of the abatement technologies.

On the basis of the study for the evaluation of the effects on emissions of livestock management practices carried out by CRPA for the emission scenarios for 2020 and 2030 (CRPA, 2018), NH₃ emissions from storage for cattle have been modified considering the average distribution of the covered tanks related to the different ammonia emission reduction efficiencies.

EFs for manure storage reported in the Table 6.5 have been multiplied by the percentage of nitrogen remaining after housing emissions and the result has been multiplied by the nitrogen excreted in housing to obtain emissions from storage. Emissions have been divided by total heads to obtain the EF kg/head reported in the Table 6.8 for the year 2018.

Regarding emission factors for cattle, the evolution of different abatement technologies along the period is considered in the EFs used for NH₃ estimation for housing, storage and land spreading systems. Improvements in the abatement technologies are based on the results of both the IIASA questionnaire for the implementation of RAINS scenarios in 2003 and an *ad hoc* survey conduct in the 2005 by CRPA (CRPA, 2006 [a], [b]) and on ISTAT statistics such as 2010 Agricultural Census, 2013 and 2016 Farm Structure Survey.

Compared to the previous IIR, further information on dairy cattle category was added as required by the NECD review process (EEA, 2017).

6.2.1.2 Swine (3B3)

Activity data of swine population (3B3) reported in the IIR/NFR are different from data reported in the NIR/CRF. In fact, piglets (swine less than 20 kg) are included in the swine population in the NIR/CRF for the estimation of CH_4 emission from enteric fermentation, while they are not included in the number of the NFR templates because the NH_3 EF used for sows takes into account the emissions from piglets, thus ensuring the comparability of the implied emission factors. For NH_3 estimations average weighted emission factors for each category (other swine and sows) are calculated taking in account the relevant emission factors of the abatement technologies for each manure system. The implemented abatement technologies for the years 1990, 2003 and 2005 are reported in Table 6.6.

Table 6.6 Abatement technologies for the swine category

Livestock category	1990	2003	2005	2010	2013
Housing					
	55%				
	Partly- slatted				
	floor		26% FSF;		
fattening	(PSF);		39% PSF;		
swine	20% Fully-		12% FSF + vacuum system (VS);		
Swine	slatted		4% FSF + with flush canals;		~
	floor	550/ DCE	7% FSF + with flush tubes;		Same
	(FSF); 25% solid	55% PSF; 25% FSF;	5% PSF + VS; 6% PSF + with flush canals;	Como distribution	distribution
	floor	20% solid floor	1% PSF + with flush tubes	Same distribution for the year 2005	for the year 2005
	11001	2070 30114 11001	26% FSF;	101 the year 2005	2003
			52% PSF;		
gestating			5% FSF + vacuum system (VS);		
sows (75%			5% FSF + with flush canals;		
of the total			7% FSF + with flush tubes;		Same
sows)			2% PSF + VS;		distribution
	65% FSF;	50% FSF; 50%	2% PSF + with flush canals;	Same distribution	•
	35% PSF	PSF	1% PSF + with flush tubes	for the year 2005	2005
lactating	75% FSF+	65% FSF+ deep	52% FSF + deep collection pit;	Same distribution	Same
sows (25%	deep	collection pit;	39% sloping floor;	for the year 2005	distribution

Livestock category	1990	2003	2005		2010	2013
Housing						
of the total	collection	35% sloping floor	3% with flush;			for the year
sows)	pit;		6% mechanical re	moval		2005
	25%					
	sloping					
	floor					
	80% FSF	+	63% FSF + deep o			
	deep		14% sloping floor	;		
weaners 6-	collection	1	7% FSF + VS;	1 . 1		C C
20 kg	pit;	700/ ECE . 1	11% FSF with flu			Same
	20%	70% FSF+ deep	2% FSF + scraper 2% PSF + VS;	;	Same distribution	distribution
	sloping floor	collection pit; 30% sloping floor		Mastion nit	for the year 2005	for the year 2005
	11001	50% Stoping Hoor	1% FSF + deep co	mection pit	101 the year 2003	2003
Storage						
	61%					
	lagoons;	54% lagoons;			10% lagoons;	
swine	36% tank	s; 43% tanks;	46% lagoons;		79% tanks;	7% lagoons;
	3% cover	red 3% covered	51% tanks;		11% covered	67% tanks;
	storage	storage	3% covered stora	ge	storage	25% covered storage
Livestock						
category	1990	2003	2005	2010	2013	2016
Land						
spreading				70%		36%
	100%	900/ broadcasting	700/ handonsting		190/ handanst	
	100%	80% broadcasting 10% low	78% broadcasting	broadcasting 17% low	48% broadcasti 30% low	ng broadcasting 27% low
		efficiency	11% low efficiency	efficiency	efficiency	efficiency
swine		efficiency	1170 low efficiency	efficiency	efficiency	26%
5 WIIIC				6% medium	12% medium	medium
				efficiency	efficiency	efficiency
		10% high		7% high	11% high	11% high
		/-		. / 5**	/ - 111-511	/- 111511

Regarding emission factors for swine, the evolution of different abatement technologies along the period is considered in the EFs used for NH₃ estimation for housing, storage and land spreading systems. Improvements in the abatement technologies are based on the results of both the IIASA questionnaire for the implementation of RAINS scenarios in 2003 and an *ad hoc* survey conduct in the 2005 by CRPA (CRPA, 2006 [a], [b]). Furthermore, an update of emission factors from manure storage and land spreading for swine category has been estimated on the basis of ISTAT statistics on manure storage systems and land spreading techniques such as 2010 Agricultural Census, 2013 and 2016 Farm Structure Survey. A gradual transition to the updated emission factors has been assumed for the intermediate years (for the period 2005-2010, 2010-2013 and 2014-2016) taking in account the gradual penetration of the abatement technologies.

On the basis of the study for the evaluation of the effects on emissions of livestock management practices carried out by CRPA for the emission scenarios for 2020 and 2030 (CRPA, 2018), NH₃ emissions from storage for swine have been modified considering the average distribution of the covered tanks related to the different ammonia emission reduction efficiencies.

6.2.1.3 Poultry (3B4g)

As regards 3B4gi (laying hens) and 3B4gii (Broilers) categories, NH_3 emissions show different trends. The different trend for the laying hens is due to the evolution of different abatement technologies along the period, that are considered in the EFs used for NH_3 estimation for housing, storage and land spreading systems.

Emission factors used for each of the different abatement technologies for laying hens (as referenced in CRPA, 2006[a] and CRPA, 2006[b]) are reported in Table 6.7.

Table 6.7 AWMS distribution, abatement technologies and EF by manure management system for the laying hens category

Emission factors by manure management system	1990	2003	2005	2010
Housing				
open manure storage under cages (for liquid manure) (RS) = 0.220 kg				
NH3/head/year (EC, 2003)	100%	20%	11%	4%
deep pit = 0.162 kg NH3/head/year (ENEA, 2003)		24%		
vertical tiered cages with manure belts and forced air drying $= 0.06 \text{ kg}$				
NH3/head/year (ENEA, 2003) [reduction in ammonia emissions of 73%				
compared to RS]		56%	74%	50%
vertical tiered cages with manure belt and whisk-forced air drying = 0.088				
kg NH3/head/year (EC, 2003) [reduction in ammonia emissions of 60%				
compared to RS]			2%	
aerated open manure storage (deep-pit or high rise systems and canal house) =				
0.154 kg NH3/head/year (EC, 2003) [reduction in ammonia emissions of 30%			100/	4.4.07
compared to RS]			10%	11%
vertical tiered cages with manure belt and drying tunnel over the cages =				
0.044 kg NH3/head/year (EC, 2003) [reduction in ammonia emissions of 80%			20/	
compared to RS]			3%	
Loose housing with outdoor access (RS) = 0.3 kg NH3/head/year (Bittman S.				70/
et al, 2014)				7%
Loose housing without outdoor access = 0.18 kg NH3/head/year (Bittman S. et				200/
al, 2014; our assumptions)				28%
Storage				
liquid manure = 16% (percentage of nitrogen to storage) (Nicholson et al, 2004)	100%	20%	11%	4%
solid manure = 7.3% (ENEA, 2003)		80%	89%	96%
Land spreading				
liquid manure = 37.1% of TAN applied (TAN/TKN = 35%) (CRPA, 2006[a])				
[broadcasting]	100%	5%	9%	9%
low efficiency = 7.8% (bandspreading and incorporation within 6 hours for				
liquid manure) [reduction of 40% compared to broadcasting]		50%	65%	65%
high efficiency = 2.6% (shallow and deep injection for liquid manure) [reduction				
of 80% compared to broadcasting]		45%	26%	26%
solid manure = 67% of TAN applied (TAN/TKN = 21%) (Nicholson et al,				
2004; CRPA, 2006[a]) [broadcasting]		10%	9%	10%
low efficiency = 11.0% (incorporation within 12-24 hours for solid manure)				
[reduction of 20% compared to broadcasting]		40%	37%	43%
high efficiency = 2.8% (incorporation within 4 hours for solid manure)				
[reduction of 80% compared to broadcasting]		50%	54%	46%

Emission factors used for each of the different techniques for housing are derived from ILF BREF of IPPC (EC, 2003) and a study at national level on ammonia emissions from laying hens (ENEA, 2003). In 2010, on the basis of the housing distribution collected from the 2010 Agricultural Census and emission factors and abatement systems data reported in the Guidance from the UNECE Task Force on Reactive Nitrogen (Bittman S. et al, 2014) emission factors have been updated. Between 2005 and 2010 a gradual transition to the updated distribution of housing systems has been assumed for the intermediate years taking in account the gradual penetration of systems to ensure animal welfare.

As regards the manure storage, emission factors are expressed as a percentage of the nitrogen contained in manure to storage. Emission factors used for liquid manure is derived from Nicholson et al (Nicholson et al, 2004) and emission factors for solid manure is from ENEA (ENEA, 2003). On the basis of the 2010 Agricultural Census conducted by ISTAT, an update of emission factors from manure storage for laying hens

category has been estimated. A gradual transition to the updated emission factors has been assumed for the intermediate years (for the period 2005-2010) taking in account the gradual penetration of the abatement technologies. EFs for manure storage reported in Table 6.7 have been multiplied by the amount of nitrogen remaining after housing emissions.

For land spreading, emissions have been estimated by CRPA (CRPA, 2006[a] and CRPA, 2006[b]). As regards the liquid manure, the amount of N-NH₄ emissions, in percentage of the applied ammoniacal nitrogen, have been assumed equal to those of the cattle slurry due to the lack of data (CRPA, 2006[a]). As regards the solid manure, the amount of N-NH₄ emissions, in percentage of the applied ammoniacal nitrogen, were equal to 67% (Nicholson et al, 2004; CRPA, 2006[a]). In 2003 and 2005 the evolution of different improvements technologies based on the results of both the IIASA questionnaire for the implementation of RAINS scenarios and a survey conduct by CRPA, has been implemented in the EFs used. For the period 1900-2003, a linear emission reduction has been estimated and applied. The efficiency of reduction techniques has been estimated on the basis of the UNECE document Control techniques for preventing and abating emissions of ammonia (as referenced in CRPA, 2006[a] and CRPA, 2006[b]). EFs for land spreading reported in Table 6.7 have been multiplied by the amount of nitrogen remaining after storage emissions.

Compared to the previous IIR, further information on laying hens category was added as required by the NECD review process (EEA, 2017).

As regards broilers, only a slight improvement on spreading system has occurred. From 1995 a chickendung drying process system has been introduced for laying hens and improved along the period.

As recommends by the 2019 NECD review (EEA, 2019), emissions of NOx and NH₃ from turkeys have been estimated and reported in category 3B4giii while PM and NMVOC emissions are included in 3B4giv category.

Regarding emission factors for poultry, the evolution of different abatement technologies along the period is considered in the EFs used for NH₃ estimation for housing, storage and land spreading systems. Improvements in the abatement technologies are based on the results of both the IIASA questionnaire for the implementation of RAINS scenarios in 2003 and an *ad hoc* survey conduct in the 2005 by CRPA (CRPA, 2006 [a], [b]) and on ISTAT statistics such as 2010 Agricultural Census, 2013 and 2016 Farm Structure Survey.

Average emission factors for NH₃ per head are reported in Table 6.8.

Table 6.8 NH₃ emission factors for manure management for the year 2018

Category	Housing	Storage	Land spreading	Grazing	Total
					kg NH₃ he
Non-dairy cattle	6.95	8.85	5.77	0.10	21.66
Dairy cattle	16.73	20.69	13.36	0.10	50.88
Buffalo	7.99	10.23	8.57	0.10	26.88
Other swine (*)	2.38	1.68	1.13		5.20
Sow (*)	4.86	3.59	2.42		10.87
Sheep	0.22		0.46	0.05	0.72
Goats	0.22		0.46	0.05	0.72
Horses	3.24		2.75	0.10	6.08
Mules and asses	3.24		2.75	0.10	6.08
Laying hens	0.13	0.05	0.05		0.22
Broilers	0.08	0.04	0.03		0.15
Turkeys	0.25	0.15	0.08		0.47
Other poultry	0.08	0.04	0.03		0.16
Rabbit	0.34	0.13	0.07		0.54
Fur animals	1.37		0.34		1.70

^(*) Other swine and sows are sources that represent the 'swine' category

NH₃ emissions from digesters biogas facilities (in particular due to different phases of the process: during storage of feedstock on the premises of the biogas facility, during the liquid–solid separation of the digestate,

during storage of the digestate) have been estimated on the basis of the quantity of excreted nitrogen feeding anaerobic digesters and the tier 1 emission factor derived by the EMEP/EEA Guidebook (EMEP/EEA, 2016). NH₃ emissions from digesters biogas facilities have been subtracted from manure management category (for cattle, swine and poultry categories) and allocated in the anaerobic digestion at biogas facilities (5B2 of the waste sector). As requested during the 2019 NECD review (EEA, 2019), the data of the quantity of total feed and livestock manure sent to digesters biogas facilities are shown in Table 6.9.

Table 6.9 Total feed and animal manure sent to anaerobic digesters

Year	Amount of total feed (t)	Amount of animal manure in the feed (t)
2007	6,411,746	2,220,128
2008	5,863,026	1,891,768
2009	4,646,166	1,688,220
2010	6,513,271	1,766,348
2011	12,598,369	3,845,980
2012	15,466,667	7,080,141
2013	27,724,820	12,736,627
2014	30,933,617	14,201,573
2015	29,551,431	13,600,442
2016	29,711,711	13,672,393
2017	30,377,277	13,979,575
2018	30,311,196	13,950,253

Because of multiple substrates fed to bio-digesters, the following average characteristics of the feed, reported in Table 6.10, as supplied by CRPA, are considered for the Italian bio-digesters in order to calculate the total amount of feed from animal manure anaerobic digestion (CRPA, 2018).

Table 6.10 Percentages of different substrates for anaerobic digestion feedstock

Type of feed	Units	animal manure	energy crops	agro-industrial by-products	
Animal manure only	% in the feed	100	0	0	
Animal manure + energy crops + agro-industrial by-products	% in the feed	28	52	20	
Animal manure + energy crops	% in the feed	38	62	0	
Animal manure + agro-industrial by-products	% in the feed	69	0	31	
Energy crops + agro-industrial by-products	% in the feed	0	81	19	

Source: CRPA

On the basis of the information reported above and in consideration of the typical feed of the bio-digesters the average parameters for animal manure, energy crops and agro-industrial by-products are those reported in Table 6.11. The biogas methane content is generally reported to range from 50% to 65%, for the inventory purposes and according to CRPA methane content is assumed to be 55%. As regards the average volatile solids content, values for animal manure and agro-industrial by-products have been changed based on the recent study of CRPA (CRPA, 2018).

Table 6.11 Average parameters of different substrates for anaerobic digestion feedstock

Average CH ₄ content	Units	animal manure	energy crops	agro-industrial by- products	
Average biogas producing potential	m³ biogas/kg VS	0.4	0.6	0.6	
Average CH ₄ content	%	55	55	55	
Average volatile solids content	kg/t feed	139	280	237	

Source: CRPA

For further information on the method of estimating the quantity of manure sent to digesters and the amount of nitrogen stored in digesters, see the information and data reported in the NIR (see paragraphs 5.3.2 *Methodological issues* in chapter 5 and A7.2 Manure management (3B) in annex 7).

The percentage of nitrogen lost through N-NH₃ emissions from anaerobic digesters was subtracted from the percentage of nitrogen left after emissions during housing and storage, reducing the amount of nitrogen used at the spreading. The amount of nitrogen used at the spreading also includes the digestate.

For NO_X emissions (during storage) tier 2 method reported in the EMEP/EEA Guidebook (EMEP/EEA, 2019) was used for calculations. EFs by livestock category and manure type derived from the EMEP/EEA Guidebook (EMEP/EEA, 2019) are based on nitrogen mass-flow approach built from country specific data on nitrogen excretion and solid/liquid distribution of manure. Data have been updated as consequence of the NECD review process (EEA, 2017).

For NMVOC emissions a tier 2 method was used for calculations. Tier 2 NMVOC EFs are those reported in the EMEP/EEA Guidebook (EMEP/EEA, 2019). Data have been updated as consequence of the NECD review process (EEA, 2017 and 2018). However, the emission factors are very high and therefore more detailed analyzes will be carried out.

For particulate matter emissions a tier 1 method was used for calculations. EFs for PM10 and PM2.5 are derived from the EMEP/EEA Guidebook (EMEP/EEA, 2019; EMEP/CORINAIR, 2006), modified on the basis of the Italian animal breeding characteristics and weight parameters (Cóndor *et al.*, 2008; Cóndor, 2011). For swine and poultry, emission factors have been updated from 2010, estimating a gradual transition to the updated emission factors from 2005, reflecting changes in manure management systems recorded by ISTAT surveys (FSS and the agricultural census). From 2010 PM emission estimates are based on emission factors provided by the 2019 EMEP/EEA Guidebook. These emission factors are based on studies conducted between 2006 and 2016 which include scientific works conducted in Italy. These studies have suggested that Takai's emission factors suggested in the 2006 EMEP/CORINAIR Guidebook are too high and do not represent current particulate emission levels. A gradual transition to the updated emission factors has been assumed for the intermediate years (2004-2010) taking in account the gradual penetration of the abatement technologies. Compared to the previous IIR, further information on PM emissions was added as required by the NECD review process (EEA, 2017).

PM emissions from turkeys, sheep, goats, mules and asses and fur animals are also estimated. Average emission factors for PM per head are reported in Table 6.12.

Table 6.12 PM emission factors for manure management for the year 2018

Category	PM10	PM2.5
	kg PM hea	d ⁻¹ yr ⁻¹
Non-dairy cattle	0.320	0.211
Dairy cattle	0.654	0.426
Buffalo	0.514	0.336
Other swine (*)	0.190	0.008
Sow (*)	0.231	0.012
Sheep	0.053	0.016
Goats	0.050	0.015
Horses	0.242	0.154
Mules and asses	0.137	0.086
Laying hens	0.033	0.002

Category	PM10	PM2.5
	kg PM hea	$d^{-1} yr^{-1}$
Broilers	0.024	0.002
Other poultry	0.064	0.012
Rabbit	-	-
Fur animals	0.064	0.002

^(*) Other swine and sows are sources that represent the 'swine' category

6.3 AGRICULTURAL SOILS (**3D**)

For agricultural soils, estimations of NH₃ emissions account for the direct application of synthetic N-fertilizers (3Da1), animal manure applied to soils (3Da2a), sewage sludge applied to soils (3Da2b), other organic fertilisers applied to soil (3Da2c), animal grazing (3Da3) and N fixed by cultivated crops, leguminous cultivation (3De). For the same sources, emissions of NO_X were estimated (except for 3De *Cultivated crops*). *Crop residues applied to soils* (3Da4) and *Indirect emissions from managed soils* (3Db) emissions have not been estimated as in the guidelines there is insufficient information. PM10 and PM2.5 emissions from the Farm-level agricultural operations including storage, handling and transport of agricultural products have been estimated and reported in 3Dc category. NMVOC emissions from animal manure applied to soils, animal grazing and cultivated crops have been estimated and reported in 3Da2a, 3Da3 and 3De categories respectively. HCB emissions from the use of pesticides have been estimated and reported in 3Df category.

NH₃ emissions from synthetic N-fertilizer (3Da1) are based on the guidebook methodology (EMEP/EEA, 2016), which provides different EFs by type of fertilizers taking into account climatic conditions and pH of the soil (EFs in Table 6.2). A tier 2 method has been implemented for 3Da1 source. NH₃ emissions from synthetic N-fertilizers are obtained with the amount of the N content by type of fertilizer multiplied by the specific EFs. Emissions have been calculated on the basis of EFs for temperate climate and normal pH factors according to the IPCC climate zones classification and the definition available in the 2002 EMEP/CORINAIR Guidebook for which Italy is defined with large areas of acidic soils (soil pH below 7.0) and with some calcareous soils (or managed with soil pH above 7.0). Data have been updated as consequence of the NECD review process (EEA, 2017).

In 2011 a validation of EFs and estimations was carried out considering the results of a research study that estimated, at NUTS 2 level, emissions for the use of synthetic N-fertilizers considering type of cultivation, altitude, and climatic conditions (CRPA, 2010[b]; Cóndor and Valli, 2011).

 NO_X emission factor for synthetic N-fertilizer is equal to 0.04 kg NO_2 /kg fertiliser N applied (EMEP/CORINAIR, 2019). Data have been updated as consequence of the NECD review process (EEA, 2017).

The method for estimating NH₃ emissions from animal manure applied to soils (3Da2a) is described in 3B (tier 2). On the basis of ISTAT statistics on spreading systems such as 2010 Agricultural Census, 2013 and 2016 Farm Structure Survey, an update of emission factors from land spreading for cattle, swine, laying hens and broilers categories have been estimated. A gradual transition to the updated emission factors has been assumed for the intermediate years (for the period 2005-2010, 2010-2013 and 2013-2016) taking in account the gradual penetration of the abatement technologies. For NO_X emissions (during spreading) a tier 2 method was used for calculations. EFs by livestock category and manure type derived from the EMEP/EEA Guidebook (EMEP/EEA, 2019) are based on nitrogen mass-flow approach. Data have been updated as consequence of the NECD review process (EEA, 2017). For NMVOC emissions a tier 2 method was used for calculations. Tier 2 NMVOC EFs are those reported in the EMEP/EEA Guidebook (EMEP/EEA, 2019).

Concerning the sludge spreading (3Da2b), the total production of sludge from urban wastewater plants, as well as the total amount of sludge used in agriculture and some parameters such as N content, are communicated from 1995 by the Ministry for the Environment, Land and Sea from 1995 (MATTM, several years[a]) in the framework of the reporting commitments fixed by the European Sewage Sludge Directive (EC, 1986) transposed into the national Legislative Decree 27 January 1992, n. 99. From 1990 to 1994 activity data

and parameters were reconstructed, as reported in detail in the Chapter 8 of the National Inventory Report on the Italian greenhouse gas inventory (ISPRA, several years [a]).

The amount of sewage N applied was calculated using the amount of sewage sludge (expressed in t dry matter) and the N content of sludge. The dry matter contained in sludge at national level is assumed to be 25% of total sludge. In Table 6.13, the total amount of sewage sludge production as well as sludge used in agriculture and nitrogen content in sludge is reported. The default NH₃ EF (0.13 kg NH₃/kg N applied) and NOx EF (0.04 kg NO₂/kg N applied) are from EMEP/EEA Guidebook (EMEP/EEA, 2019). Data have been updated as consequence of the NECD review process (EEA, 2017).

Table 6.13 *Sludge spreading activity data and parameters, 1990 – 2018*

Year	Sewage sludge production (t)	Sewage sludge used in agriculture (t)	Sewage sludge used in agriculture (t of dry matter)	N concentration in sludge (% dry matter)	Total N in sludge
1990	3,272,148	392,658	98,164	5.2	5,071
1995	2,437,024	630,046	157,512	5.2	8,137
2000	3,402,016	869,696	217,424	5.0	10,954
2005	4,298,576	862,970	215,742	4.1	8,874
2010	3,358,900	992,859	248,215	4.0	10,040
2011	3,407,040	1,196,634	299,159	3.7	11,119
2012	2,616,094	1,096,380	274,095	4.7	12,864
2013	2,487,244	814,178	203,545	4.0	8,053
2014	2,544,291	804,623	201,156	4.1	8,301
2015	3,069,302	888,899	222,225	3.7	8,303
2016	3,183,919	770,069	192,517	3.7	7,174
2017	3,183,641	696,354	174,089	3.9	6,856
2018	3,235,233	687,441	171,860	4.0	6,874

As regards the other organic fertilisers applied to soil (3Da2c) category, the use of other organic N fertilisers, including compost and organic amendments, and N content are provided by ISTAT (as reported in the paragraph 6.1). The default NH₃ EF (0.08 kg NH₃/kg waste N applied) and NOx EF (0.04 kg NO₂/kg N waste applied) are from EMEP/EEA Guidebook (EMEP/EEA, 2019). Data have been updated as consequence of the NECD review process (EEA, 2017).

For 3Da3 the time series of the quantity of N from animal grazing is the same as that reported in the NIR and in the relevant CRF tables. The method for estimating NH₃ emissions is described in 3B (tier 2). The default NO_X EF is from EMEP/EEA Guidebook (EMEP/EEA, 2019). For NMVOC emissions a tier 2 method was used for calculations. Tier 2 NMVOC EFs are those reported in the EMEP/EEA Guidebook (EMEP/EEA, 2019).

Nitrogen input from N-fixing crops (3De) has been estimated starting from data on surface and production for N-fixing crops and forage legumes; nitrogen input from N-fixing crops (kg N yr⁻¹) is calculated with a country-specific methodology. Peculiarities that are present in Italy were considered: N-fixing crops and legumes forage. Nitrogen input is calculated with two parameters: cultivated surface and nitrogen fixed per hectare (Erdamn 1959 in Giardini, 1983). Emissions are calculated using the default emission factor 1 kg N-NH₃/ha (EMEP/CORINAIR, 2006). In Table 6.14, cultivated surface from N-fixing species (ha yr⁻¹) and N fixed by each species (kg N ha⁻¹ yr⁻¹) are shown.

NMVOC emissions from cultivated crops have been estimated and reported in 3De category. The method (tier 1) for estimating NMVOC emissions from cultivated crops (3De) is described in 3D chapter of the EMEP/EEA Guidebook (EMEP/EEA, 2019). The default NMVOC EF is from EMEP/EEA Guidebook (EMEP/EEA, 2019). Hectares of wheat, rape, rye crops surface and total grass surface were considered as

activity data according to the methodology EMEP/EEA Guidebook (EMEP/EEA, 2019). Emissions have been added as requested by the NECD review process (EEA, 2017).

Table 6.14 Cultivated surface (ha) and nitrogen fixed by each variety (kg N ha⁻¹ yr⁻¹)

	N fixed	1990	1995	2000	2005	2010	2015	2016	2017	2018
	(kg N ha ⁻¹ yr ⁻									
	1)					ha				
Bean, f,s.	40	29,096	23,943	23,448	23,146	19,027	17,059	18,686	18,618	18,368
Bean, d.s.	40	23,002	14,462	11,046	8,755	7,001	5,870	5,895	6,001	6,411
Broad bean, f,s.	40	16,564	14,180	11,998	9,484	8,487	7,914	7,592	7,553	7,985
Broad bean, d.s.	40	104,045	63,257	47,841	48,507	52,108	42,157	50,167	51,135	50,421
Pea, f,s.	50	28,192	21,582	11,403	11,636	8,691	14,940	16,255	15,232	15,559
Pea, d.s.	72	10,127	6,625	4,498	11,134	11,692	11,181	14,113	17,046	17,916
Chickpea	40	4,624	3,023	3,996	5,256	6,813	11,167	13,940	20,025	26,024
Lentil	40	1,048	1,038	1,016	1,786	2,458	3,099	3,215	4,981	5,417
Vetch	80	5,768	6,532	6,800	7,656	8,000	8,230	8,230	8,230	8,230
Lupin	40	3,303	3,070	3,300	2,500	4,000	4,620	4,620	4,620	4,620
Soya bean	58	521,169	195,191	256,647	152,331	159,511	308,979	288,060	322,417	326,587
Alfalfa	194	987,000	823,834	810,866	779,430	745,128	667,325	677,524	682,160	695,492
Clover grass	103	224,087	125,009	114,844	103,677	102,691	119,942	124,864	118,390	124,375
Total		1,958,025	1,301,746	1,307,702	1,165,298	1,135,606	1,222,483	1,233,161	1,276,409	1,307,405

(*) f.s.=fresh seed; d.s.=dry seed

PM10 and PM2.5 emissions from the Farm-level agricultural operations including storage, handling and transport of agricultural products have been estimated and reported in 3Dc category. The method (tier 1) for estimating PM10 and PM2.5 emissions is described in 3D chapter of the EMEP/EEA Guidebook (EMEP/EEA, 2019). The default PM10 and PM2.5 EFs are from EMEP/EEA Guidebook (EMEP/EEA, 2019). Hectares of total arable crop surface have been used as activity data for PM emissions according to the methodology EMEP/EEA Guidebook (EMEP/EEA, 2019). Emissions have been added as requested by the NECD review process (EEA, 2017).

HCB emissions from the use of pesticides (3Df) have been estimated. HCB emissions result from the use of HCB as pesticide but also by the use of other pesticides which contain HCB as an impurity. For the period 1996-2001, data are from the database of pesticides contained in the National agricultural information system (*Sistema informativo agricolo nazionale* - SIAN³). For the period 2002-2008, SIAN data have been elaborated by Provincial Agency for the Protection of the Environment of the Autonomous Province of Trento⁴. From 2009 activity data have been processed by the Service for risks and environmental sustainability of technologies, chemical substances, production cycles and water services and for inspection activities of ISPRA on the basis of data provided by ISTAT related to substances chlorothalonil, picloram, lindane and chlortal-dimetile which are the active ingredients of pesticides containing HCB.

The availability of data allows estimating emissions from pesticides where HCB is found as an impurity, as in lindane, DCPA, chlorothalonil and Picloram. Emissions from the use of HCB as a pesticide were not estimated. On the basis of the amount of HCB contained in these pesticides (lindane: 0.01%; DCPA: 0.1%; chlorothalonil: 0.005%; Picloram: 0.005%) and according to the EMEP/EEA Guidebook (EMEP/EEA, 2019), which states all the HCB present as a contaminant will be volatilised, HCB emissions result in 46.97 kg for 1990 and 2.98 kg in 2017 for Italy (for 2018 updated data are not available yet). An international research work at European level (Berdowski et al., 1997) estimated 400 kg of HCB emissions from pesticide use for Italy in 1990 while in the last years these emissions should be null.

³ http://www.sian.it/portale-sian/attivaservizio.jsp?sid=174&pid=6&servizio=Banca+Dati+Fitofarmaci&bottoni=no

⁴ http://www.appa.provincia.tn.it/fitofarmaci/programmazione_dei_controlli_ambientali/-Criteri vendita_prodotti fitosanitari/pagina55.html

Detailed information on activity data sources, methods and EFs by pollutant for 3D category is shown in Table 6.15.

Table 6.15 Activity data sources, methods and emission factors by pollutant for agriculture soils

NFR code	Category	Method	Activity data	Emission Factor
3Da1	Inorganic N-fertilizers (includes also urea application)	T2 (NH ₃), T1 (NO _X)	NS	T2 (NH ₃), D (NO _X)
3Da2a	Animal manure applied to soils	T2 (NH ₃ , NO _X , NMVOC)	NS	$CS (NH_3), D$ $(NO_X), T2$ (NMVOC)
3Da2b	Sewage sludge applied to soils	T1 (NH ₃ , NO _X)	NS	$D(NH_3, NO_X)$
3Da2c	Other organic fertilisers applied to soils (including compost)	T1 (NH ₃ , NO _X)	NS	D (NH ₃ , NO _X)
3Da3	Urine and dung deposited by grazing animals	T2 (NH ₃ , NO _X , NMVOC)	NS	CS (NH ₃), D (NO _X), T2 (NMVOC)
3Da4	Crop residues applied to soils			
3Db	Indirect emissions from managed soils			
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	T1 (PM10, PM2.5)	NS	D (PM10, PM2.5)
3Dd	Off-farm storage, handling and transport of bulk agricultural products			
3De	Cultivated crops	CS (NH ₃), T1 (NMVOC)	NS	D (NH ₃ , NMVOC)
3Df	Use of pesticides	T1 (HCB)	NS	D (HCB)

6.4 FIELD BURNING OF AGRICULTURAL RESIDUES (3F)

NMVOC, CO, NO_X, NH₃, SO₂, PM10, PM2.5, BC, As, Cr, Cu, Ni, Se, Zn, Pb, Cd, Hg, Dioxin and PAH emissions have been estimated, applying the tier 1 and tier 2 (for heavy metals, PAH emissions and BC) approach. A detailed description of the methodology and parameters used is shown in the NIR (ISPRA, several years [a]). The same methodology to estimate emissions from open burning of waste, as reported in paragraph 7.2 of the waste section (see *Small scale waste burning (5C2)* subparagraph), is used on the basis of the amount of fixed residues instead of removable residues. Concerning NO_X, CO, NMVOC, IPCC emission factors have been used (IPCC, 1997), while for PM10 and PM2.5 emission factors from the USEPA (EPA, 1995) and BC emission factors from the EMEP/EEA Guidebook (EMEP/EEA, 2019) have been applied. NH₃ and SO₂ emission factors are from the EMEP/EEA Guidebook (EMEP/EEA, 2019) and emissions have been added as requested by the NECD review process (EEA, 2017). Heavy metals, Dioxin and PAH emission factors are from the EMEP/EEA Guidebook (EMEP/EEA, 2019) and emissions from Pb, Cd, Hg, Dioxin and PAH have been added as requested by the NECD review process (EEA, 2018).

As concerns NO_X and CO emission factors, values used are in the range of the tier 1 emission factors from the EMEP/EEA Guidebook (EMEP/EEA, 2019).

As concerns PM emission factors, values used are lower than those (both tier 1 and tier 2) reported in the EMEP/EEA Guidebook (EMEP/EEA, 2019). The tier 1 emission factors from EMEP/EEA Guidebook are similar but not equal to the average of the values relating to four types of crops reported in the reference scientific publication mentioned in the Guidebook (Jenkins, 1996a). However for field burning of rice cultivation, the emission factor reported in the Guidebook is very different from that in the reference publication of Jenkins. Also in consideration of these issues emission factors have not been changed with those of the Guidebook and further work is planned with the aim to find values more representative of our country.

6.5 TIME SERIES AND KEY CATEGORIES

The following sections present an outline of the main key categories in the agriculture sector.

The agriculture sector is the main source of NH₃ emissions in Italy; for the main pollutants, in 2018 the sector accounts for:

- 94.2% of national total NH₃ emissions
- 29.2% of national total HCB emissions
- 13.0% of national total PM10 emissions
- 7.7% of national total BC emissions
- 7.6% of national total NO_X emissions
- 5.8% of national total NMVOC emissions
- 3.7% of national total PM2.5 emissions
- 2.2% of national total Cd emissions

Moreover, the sector comprises 0.5% of total CO emissions, 0.5% of PAH, 0.3% of Hg, 0.1% of SO₂, 0.1% of Cr, 0.1% of Se, 0.04% of Dioxins, 0.04% of Ni, 0.02% of As, 0.02% of Zn and 0.01% of Pb. There are no particular differences as compared to the sectoral share in 1990 when the agriculture sector accounted for 96.4% of NH₃ emissions, 11.1% of PM10, 3.0% of PM2.5, NMVOC emissions (4.8%), except for NO_X emissions (2.9%) and HCB emissions where agriculture accounted for 70.3% of total national emissions.

Table 6.16 reports the key categories identified in the agriculture sector while the time series of NH₃ emissions by sources is shown in Table 6.17.

Concerning NH₃ emissions, the category *manure management (3B)* represents in 2018 59.7% of national total ammonia emissions (59.5% in 1990). In particular, NH₃ emissions from *cattle* (3B1) stand for 63.2% of 3B emissions, while emissions from *swine* (3B3) and *poultry* (3B4g) represent 15.2% and 13.7%, respectively. The category *agricultural soils (3D)* represents in 2018 40.1% of national total ammonia emissions (40.4% in 1990). The animal manure applied to soils (3Da2a) and the use of synthetic N-fertilisers (3Da1) represent 51.6% and 36.4% of 3D emissions, respectively.

Regarding PM10 emissions, the category *manure management (3B)* accounts for 6.0% in 2018 (6.1% in 1990) of national total PM10 emissions. *Poultry* (3B4g), *cattle* (3B1) and *swine* (3B3) represent the major contributors to the total PM10 emissions from category 3B with 57.0%, 23.2% and 12.9%, respectively. The category Farm-level agricultural operations including storage, handling and transport of agricultural products (3Dc) accounts for 5.8% in 2018 (4.3% in 1990) of national total PM10 emissions. For PM2.5 emissions, the category *manure management* (3B) contributes for 1.9% in 2018 (1.9% in 1990) of national total PM2.5 emissions. *Cattle* (3B1) accounts for 58.6%, while *poultry* (3B4g) stands for 27.4% to the total PM2.5 emissions from category 3B. The category Farm-level agricultural operations including storage, handling and transport of agricultural products (3Dc) accounts for 0.3% in 2018 (0.2% in 1990) of national total PM2.5 emissions.

Concerning NO_X emissions, the category manure management (3B) represents in 2018 0.26% of national total NO_X emissions (0.09% in 1990). For NO_X emissions, the category agricultural soils (3D) contributes for 7.3% in 2018 (2.8% in 1990) of national total NO_X emissions. Inorganic N-fertilizers (3Da1) and Animal manure applied to soils (3Da2a) account for 40.5% and 40.8% of total 3D emissions, respectively.

For NMVOC emissions, the category *manure management* (3B) and *agricultural soils* (3D) contributes for 80.8% and 18.7% in 2018 of agricultural NMVOC emissions. Cattle (3B1), poultry (3B4g) and buffalo (3B4a) represent the major contributors to the total NMVOC emissions from category 3B with 75.1%, 14.4% and

4.9%, respectively. Most of the emissions in the 3D category derive from *Animal manure applied to soils* (3Da2a).

Table 6.16 Key categories in the agriculture sector in 2018

SO	NO_X	NH3	NMVOC	CO	PM10	PM2.5	BC	Pb	Cd	Hg	PAH	DIOX	HCB	PCE
6														
B1a	0.07	17.30	4.66		0.62	0.50								
B1b	0.08	18.25	4.29		0.76	0.62								
3B2	0.02	0.43	0.10		0.21	0.08								
B3	0.00	8.53	0.34		0.77	0.04								
B4a	0.01	2.00	0.58		0.12	0.09								
B4d	0.00	0.06	0.01		0.03	0.01								
B4e	0.01	0.32	0.10		0.05	0.04								
B4f	0.00	0.06	0.01		0.01	0.00								
B4gi	0.02	1.88	0.25		0.73	0.07								
B4gii	0.02	3.59	0.60		1.43	0.18								
B4giv	0.01	0.74	0.86		1.25	0.28								
B4h	0.01	1.62	0.11		0.01	0.00								
Da1	2.96	13.78												
Da2a	2.98	19.49	1.99											
Da2b	0.04	0.24												
Da2c	0.42	1.54												
Da3	0.90	2.40	0.02											
Dc					5.78	0.27								
De		0.36	0.76											
Df													29.25	
F 0.07	0.07	0.13	0.07	0.58	1.20	1.49	0.61	0.01	2.25	0.30	0.54	0.04		

Note: key categories are shaded in blue

Table 6.17 Time series of ammonia emissions in agriculture (Gg)

NFR SECTOR 3	1990	1995	2000	2005	2010	2015	2016	2017	2018
3B1a Manure management - Dairy cattle	93.01	75.37	73.81	66.93	66.52	66.40	66.54	66.24	63.36
3B1b Manure management - Non-dairy									
cattle	88.92	86.85	82.71	71.18	66.67	62.08	65.04	65.48	66.84
3B2 Manure management - Sheep	1.91	2.33	2.42	1.74	1.73	1.56	1.59	1.58	1.57
3B3 Manure management - Swine	36.65	35.01	35.56	37.06	34.64	32.11	31.44	31.75	31.24
3B4a Manure management - Buffalo	3.06	4.53	5.65	6.14	11.16	10.58	7.14	7.38	7.31
3B4d Manure management - Goats	0.28	0.30	0.30	0.21	0.21	0.21	0.22	0.22	0.22
3B4e Manure management - Horses	0.93	1.02	0.91	0.90	1.21	1.25	1.26	1.19	1.19
3B4f Manure management - Mules and asses	0.27	0.12	0.11	0.10	0.15	0.23	0.24	0.23	0.23
3B4gi Manure management - Laying hens	13.87	12.68	9.56	6.48	7.84	7.13	7.38	7.27	6.90
3B4gii Manure management - Broilers	12.37	12.96	12.17	12.09	12.00	13.37	13.96	13.69	13.16
3B4giii Manure management - Turkeys	7.30	7.24	7.18	5.42	7.08	7.35	5.46	5.46	5.46
3B4giv Manure management - Other poultry 3B4h Manure management - Other animals	1.76	4.06	3.15	4.62	2.56	3.54	3.46	2.86	2.70
(*)	7.51	8.41	8.79	10.00	8.69	7.72	7.43	6.89	5.93
3Da1 Inorganic N-fertilizers (includes also									
urea application)	70.44	73.59	73.27	71.57	48.34	53.71	63.35	54.54	50.45
3Da2a Animal manure applied to soils	97.02	89.03	83.60	75.33	75.34	72.57	71.64	72.03	71.37
3Da2b Sewage sludge applied to soils 3Da2c Other organic fertilisers applied to soils	0.66	1.06	1.42	1.15	1.31	1.08	0.93	0.89	0.89
(including compost)	1.32	1.45	1.81	1.78	3.29	4.68	4.58	7.02	5.64
3Da3 Urine and dung deposited by grazing animals	10.09	11.33	11.56	8.85	9.15	8.80	8.97	8.84	8.79
3De Cultivated crops	2.38	1.58	1.59	1.42	1.38	1.48	1.50	1.55	1.30
3F Field burning of agricultural residues	0.49	0.48	0.48	0.52	0.50	0.51	0.55	0.49	0.49

NFR SECTOR 3	1990	1995	2000	2005	2010	2015	2016	2017	2018
Total	450.21	429.41	416.05	383.50	359.78	356.35	362.68	355.60	345.04

Note: (*) 3B4h includes rabbits and fur animals

The largest and most intensive agricultural area in Italy is the Po River catchment with the following characteristics: high crop yields due to climatic factors, double cropping system adopted by livestock farms, flooded rice fields, high livestock density and animal production that keep animals in stables all the year (Bassanino et al 2011, Bechini and Castoldi 2009). 64%, 76% and 84% of cattle, poultry and swine production are located in Piedmont, Lombardy, Emilia-Romagna, and Veneto Regions (Northern Italy/Po River Basin). At regional level, the presence of large cattle, poultry and swine farms in the Po basin assume a particular relevance for air quality issues, especially, for the specific meteorological conditions of this area.

The reduction of NH₃ emissions from 3B is mainly related to the reduction in the number of animals. Between 1990 and 2018 total NH₃ emissions from 3B have reduced by 23.0%. Cattle livestock decreased by 23.6% (from 7,752,152 to 5,923,204 heads). Dairy cattle and non-dairy cattle have decreased by 35.9% and 17.2%, respectively. The so-called first pillar of the EU Common Agriculture Policy (CAP), dealing with market support, had a strong impact through the milk quota system by reducing animal numbers in the dairy sector to compensate for increasing animal productivity (EEA, 2016). On the contrary, swine and poultry have increased between 1990 and 2018 by 2.0% and 3.6%, respectively (see Table 6.1). Abatement technologies are considered in the EFs used for NH₃ estimations. Research studies funded by ISPRA, such as the MeditAiraneo project, or by the Ministry of Environment have allowed us to collect information on the inclusion of abatement technologies in Italy, especially those related to the swine and poultry recovery and treatment of manure and to land spreading (CRPA, 2006[b]; Cóndor et al., 2008; CRPA, 2010[b]).

NH₃ emissions of 3D category are driven by the animal manure applied to soils and the use of inorganic N-fertilizers. Between 1990-2018 emissions have respectively decreased by 26.4% and 28.4% mainly due to the reduction of the number of animals and the use of inorganic N-fertilizers, that are decreased overall by 40.9% (the urea decreased by 12.8%). According to the Italian Fertilizer Association (AIF, Associazione Italiana Fertilizzanti) the use of fertilisers is determined by their cost and particularly by the price of agricultural products. Because of the agriculture product price decreasing, minor amount of fertilisers has been used by farmers to reduce costs (Perelli, 2007). Furthermore, the EU Nitrates Directive which aims at reducing and preventing water pollution caused by nitrates from agricultural sources has addressed the lower use of synthetic and nitrogen-based fertilisers (EEA, 2016).

Every 5 years the national emission inventory is disaggregated at NUTS3 level as requested by CLRTAP (Cóndor *et al.*, 2008). A database with the time series for all sectors and pollutants has been published (ISPRA, 2018; ISPRA, 2009; ISPRA, several years [c]; ISPRA, several years [d]). The disaggregation of 2015 agricultural emissions has also been finalised and figures are available at the following web site: http://www.sinanet.isprambiente.it/it/sia-ispra/inventaria. The disaggregation (NUTS3) of the NH3 agricultural emissions is shown in Figure 6.2. In 2015, four regions contributed with more than 60% of agricultural NH3 emissions: Lombardia, Veneto, Emilia Romagna and Piemonte.

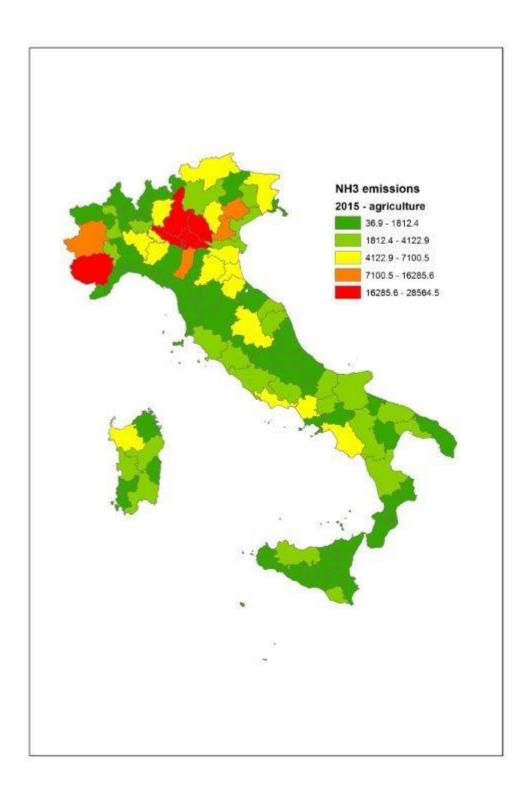


Figure 6.2 NH₃ emissions from Agriculture in 2015 (t)

6.6 QA/QC AND VERIFICATION

QA/QC procedures for the agriculture sector are in line with the 2006 IPCC Guidelines and consistent with the EMEP/EEA Guidebook. Italy has drawn up a QA/QC procedure manual and elaborates annually a QA/QC procedure manual annual an

plan both for the UNFCCC and UNECE/CLRTAP inventories. In the QA/QC Agriculture section GHG and NH₃ emissions improvements are specified (ISPRA, several years [b]). Furthermore, feedbacks for the agricultural emission inventory derive also from communication of data to different institutions (ISTAT, UNA, CRPA etc.) and/or at local level (regional environmental institutions). In addition, ISPRA participates in a technical working group on agriculture within the National Statistical System, composed by producers and users of agricultural statistics.

Data used to estimate emissions were verified with census data. Slight differences in the livestock number (cattle and other swine) are found between conjunctural surveys (used for emissions estimation) and Agricultural Census for the year 2010; while for the other categories the differences are more significant. In the conjunctural surveys, the number of heads of the sows, sheep, goats, mules and asses, broilers, hens categories is on average 15% higher than the census, whereas for other poultry the difference is 30% and for horses and rabbits is more than double.

Ammonia emissions for swine and poultry manure management from housing and storage were compared with data reported in the E-PRTR registry for the year 2014, which represent 62.1% and 19.5%, respectively, of national NH3 emissions for the same categories (3B).

Data on national sales of synthetic nitrogen fertilizers (by type of fertilizers) as provided by *Assofertilizzanti* – *Federchimica*⁵ (personal communication) for the period 2012-2016 have been compared to official statistics provided by ISTAT. Differences were mainly found for the amount of simple mineral nitrogen fertilizers, where data from *Assofertilizzanti* are higher by 20%, on average, for the years 2013-2016. This could be due to a possible double counting of some product which could be considered as a single product and as a compound with other fertilizers. Further investigations will be conducted.

A check on the urea data has been made. Yara, the only Italian producer, provided an estimate of urea consumption in the various production sectors, such as SCR engines, NOx emissions reduction, industrial and agricultural uses. All these uses have been considered in the national emissions inventory. Further checks will be made between apparent consumption and end uses.

6.7 RECALCULATIONS

In 2020, recalculations were implemented for the agricultural emission inventory.

As recommends by the 2019 NECD review (EEA, 2019), emissions of NOx and NH₃ from turkeys have been estimated and reported in category 3B4giii.

The number of laying hens and broilers has been updated from the year 2011 based on 2010 Agricultural Census and 2013 Farm Structure Survey.

The N excreted for other poultry has been updated from the year 2005 based on ISTAT statistics, such as 2010 Agricultural Census, 2005, 2007 and 2013 Farm Structure Survey.

The N excreted for calves, buffalo, turkeys and other poultry has been updated from the year 2016 based on Ministerial decree of 25 February 2016 on criteria, and general technical standards, for the regional regulation of the agronomic use of farmed effluents and wastewater, as well as for the production and agronomic use of digestate (GU, 2016).

The N excreted for dairy cattle has been updated from the year 1990 based on the 2019 UNFCCC review and was calculated using equations 31-33 of the 2006 IPCC Guidelines.

Data relating to the other organic N fertilisers and organic amendments and the nitrogen content have been modified since 2003, as ISTAT experts have documented that the values published (and available online) of

176

⁵ Federchimica is the National Association of the Chemical Industry and Assofertilizzanti represents the production companies of the fertilizer industry.

these fertilisers also include a part of manure (such as poultry droppings). To avoid double counting of emissions, the figures have been corrected.

NH₃ emissions from land spreading for cattle and broilers (from 2011), and swine (from 2014) have been corrected based on the 2016 Farm Structure Survey.

NMVOC emissions from manure storage and agricultural soils have been updated on the basis of the changes made to N excreted cattle and buffaloes, the poultry stocks and the NH₃ emissions from spreading (as described above). In addition, the update on cow's milk production, on the manure production of buffalo, the correction of the Husted values for the estimate of the VS for buffalo (for further information on Husted's study (1994), see NIR), have contributed to modify the NMVOC emissions.

As, Cr, Cu, Ni, Se and Zn emissions from field burning of agricultural residues have been added to the estimates of the agriculture sector.

HCB emissions from the use of pesticides have been modified based on the update of the emission factor, reported in the 2019 EMEP/EEA Guidebook.

Updating data on rice production for the years 2016 and 2017. Updating data on sewage N applied from 2015. Updating data on rabbits for the year 2017.

6.8 PLANNED IMPROVEMENTS

Currently, uncertainty analysis, for the agricultural emission sector, is carried out only for the GHG emission inventory. We plan to estimate uncertainties also for the other pollutants, including NH₃ and PM. Monte Carlo analysis has also been performed for one key category of the GHG agricultural emission inventory; initial results are shown in the NIR (ISPRA, several years [a]).

No emissions are estimated for 3Da4 *Crop residues applied to soils*, 3Db *Indirect emissions from managed soils* and 3Dd *off-farm storage, handling and transport of bulk agricultural products*. However, Italy will assess the availability of AD and EFs for these categories.

In the coming years, the Permanent census of agriculture will provide valuable information on animal and agronomic production methods. The focus of the Permanent census is to provide a comprehensive information framework on the structure of the agricultural system and the livestock at national, regional and local level. by integrating archive data and carrying out statistical support surveys. Statistical registers will be created with the aim of increasing the quantity and quality of information in order to reduce the response burden and the overall production cost of official statistics⁶.

⁶ http://www.istat.it/en/permanent-census/agriculture

7 WASTE (NFR SECTOR 5)

7.1 OVERVIEW OF THE SECTOR

Italy estimates the categories of the waste sector, as reported in the following box. From this year, PM emissions from the category 5A and dioxins from the category 5E have been also estimated. Conversely, Italy does not consider NH₃ emissions from latrines because this activity does not occur or it can be considered negligible. In the last available national census on wastewater treatment plants (ISTAT, 2015) the following data are reported: 99.4% of people are served by the sewage system, 17,897 wastewater system plants serve a total of 98,360,724 people equivalent; 8,377 are the Imhoff tanks present in Italy, 1,607 are the primary wastewater treatment plants, 5,604 are the secondary wastewater treatment plants and 2,309 are the advanced wastewater treatment plants. The biogas collected from the anaerobic digestion of wastewaters is burned with heat/energy recovery and relevant emissions are reported in Category 1 while emissions from the exceeding biogas which is flared are not estimated at the moment because emission factors are under investigation, but anyway it should be negligible.

NFR		SNAP					
5A	Solid waste disposal on land	09 04 01 09 04 02	Managed waste disposal on land Unmanaged waste disposal on land				
5B	Biological treatment of waste	09 10 05 09 10 06	Compost production Anaerobic digestion at biogas facilities				
5C1a	Municipal waste incineration	09 02 01	Incineration of municipal wastes				
5C1b	Other waste incineration	09 02 02 09 02 05 09 02 07 09 02 08	Incineration of industrial wastes Incineration of sludge from wastewater treatment Incineration of hospital wastes Incineration of waste oil				
5C1bv	Cremation	09 09 01	Cremation of corpses				
5C2	Small scale waste burning	09 07 00	Open burning of agricultural wastes				
5D	Wastewater handling	09 10 01 09 10 02	Waste water treatment in industry Waste water treatment in residential and commercial sector				
5E	Other waste		Car and building fires				

Concerning air pollutants, emissions estimated for each sector are reported in Table 7.1.

Table 7.1 Air pollutant emissions estimated for each sector

Main pollutants	5A	5B	5C1a	5C1bi	5C1bii	5C1biii	5C1biv	5C2	5C1bv	5D	5E
NOx			X	X	X	X	X	X	X		
CO			X	X	X	X	X	X	X		
NMVOC	X	X	X	X	X	X	X	X	X	X	
SO_x			X	X	X	X	X	X	X		
NH_3	X	X									
Particulate											
matter											
TSP	X		X	X	X	X	X	X	X		X
PM10	X		X	X	X	X	X	X	X		X
PM2.5	X		X	X	X	X	X	X	X		X

Main pollutants	5	5A	5B	5C1a	5C1bi	5C1bii	5C1biii	5C1biv	5C2	5C1bv	5D	5E
BC				X	X	X	X	X	X	X		X
Priority h metals	ieavy											
Pb				X	X	X	X	X	X	X		
Cd				X	X	X	X	X	X	X		
Hg				X	X	X	X	X		X		
POPs A	nnex											
PCB				X	X		X	X		X		
POPs A	nnex											
Dioxins				X	X	X	X	X	X	X		X
PAH				X	X	X	X	X	X	X		
HCB				X	X		X	X		X		
Other h metals	ieavy											
As				X	X	X	X	X	X	X		
Cr				X	X	X	X	X	X	X		
Cu				X	X	X	X	X	X	X		
Ni				X	X	X	X	X		X		
Se				X	X		X		X	X		
Zn				X	X	X		X	X	X		

In 2018, open burning of waste (5C2) is key category for Cd. In 1990, municipal waste incineration (5C1a) and industrial waste incineration (5C1 bi) are key categories for dioxins emissions whereas sewage sludge incineration (5C1b iv) is key category for HCB and open burning of waste (5C2) is key category for Cd. As regard the trend, municipal waste incineration (5C1a) is key category for dioxins emissions whereas open burning of agricultural waste (5C2) is key category for Cd emissions and sewage sludge incineration is a key category for HCB emissions.

The waste sector, and in particular Waste incineration (5C), is a source of different pollutants; for the main pollutants, in 2018, the sector accounts for:

- 9.8 % in national total Cd emissions;
- 8.0 % in national total HCB emissions
- 5.1 % in national total BC emissions;
- 4.6 % in national total Dioxin emissions.

Moreover, the sector comprises 2.5% of total NH $_3$ emissions, 2.1% of CO, 1.8% of PAH, 1.6% and 1.8% in national total of PM2.5 and PM10 emissions respectively and for what concerns all remaining pollutants are below 1%.

7.2 METHODOLOGICAL ISSUES

7.2.1 Solid waste disposal on land (5A)

Solid waste disposal on land is a major source concerning greenhouse gas emissions but not concerning air pollutants. Notwithstanding, NMVOC and NH₃ emissions are estimated, as a percentage of methane emitted, calculated using the IPCC Tier 2 methodology (IPCC, 1997; IPCC, 2000), through the application of the First Order Decay Model (FOD). As a consequence of the last review process also PM emissions have been estimated. A detailed description of the model and its application to Italian landfills is reported in the National Inventory Report on the Italian greenhouse gas inventory (ISPRA, 2020 [a]).

Following the suggestion of NEC review (EEA, 2017 [a]) more info about the extraction and use of biogas is provided below.

The amount of biogas recovery in landfills has increased as a result of the implementation of the European Directive on the landfill of waste (EC, 1999); the amounts of biogas recovered and flared have been estimated taking into account the amount of energy produced, the energy efficiency of the methane recovered, the captation efficiency and the efficiency in recovering methane for energy purposes assuming that the rest of methane captured is flared.

Emissions for all the relevant pollutants from biogas recovered from landfills and used for energy purposes are reported in the energy sector in "1A4a biomass" category together with wood, the biomass fraction of incinerated waste and biogas from wastewater plants. In the following scheme consumptions and low calorific values are reported for the year 2018.

1A4a biomass detailed activity data. Year 2018

Fuels		Consumption (Gg)	LCV (TJ/Gg)		
Wood and	Wood	257.48	10.47		
similar	Steam Wood	0.00	30.80		
Incinerated wa	ste (biomass)	2184.87	2307.38		
Biogas from la	ndfills	278.31	264.60		
Biogas from we	astewater plants	26.51	26.53		

It is assumed that landfill gas composition is 50% VOC. The percentage by weight of CH₄ compared to the total VOC emitted is 98.7%. The remaining 1.3% (NMVOC) consists of paraffinic, aromatic and halogenated hydrocarbons (Gaudioso et al., 1993): this assumption refers to US EPA data (US EPA, 1990). As regard ammonia, emission factor has been assumed equal to 1 volume per cent of VOC too (Tchobanoglous et al., 1993).

According with the discussion during the ESD review about CH₄ emissions from landfills and the consequent technical correction (EEA, 2017 [b]), Italy revised the half life values considering the distribution of dry and wet regions in Italy. New data (CREA, 2017) regarding raining and evapotranspiration have been elaborated allowing to distinguish between dry and wet region and the estimates have been splitted in two components considering the location of SWDS.

Methane, and consequently NMVOC and NH₃ air pollutants, is emitted from the degradation of waste occurring in municipal landfills, both managed and unmanaged (due to national legislation, from 2000 municipal solid wastes are disposed only into managed landfills). The main parameters that influence the estimation of emissions from landfills are, apart from the amount of waste disposed into managed landfill: the waste composition (which vary through the years in the model); the fraction of methane in the landfill gas (included in VOC, which has been assumed equal to 50%) and the amount of landfill gas collected and treated. These parameters are strictly dependent on the waste management policies throughout the waste streams which consist of: waste generation, collection and transportation, separation for resource recovery, treatment for volume reduction, stabilisation, recycling and energy recovery and disposal at landfill sites.

Basic data on waste production and landfills system are those provided by the national Waste Cadastre, basically built with data reported through the Uniform Statement Format (MUD). The Waste Cadastre is formed by a national branch, hosted by ISPRA, and by regional and provincial branches.

These figures are elaborated and published by ISPRA yearly since 1999: the yearbooks report waste production data, as well as data concerning landfilling, incineration, composting, anaerobic digestion and generally waste life-cycle data (APAT-ONR, several years; ISPRA, several years [a]).

For inventory purposes, a database of waste production, waste disposal in managed and unmanaged landfills and sludge disposal in landfills was created and it has been assumed that waste landfilling started in 1950.

For the year 2018, the non hazardous landfills in Italy disposed 6,486 kt of MSW and 3,512 kt of industrial wastes, as well as 330 kt of sludge from urban wastewater treatment plants.

In Table 7.2, the time series of AMSW and domestic sludge disposed into non hazardous landfills from 1990 is reported.

Table 7.2 Trend of MSW production and MSW, AMSW and domestic sludge disposed in landfills (Gg)

ACTIVITY DATA (Gg)	1990	1995	2000	2005	2010	2015	2016	2017	2018
MSW production	22,231	25,780	28,959	31,664	32,479	29,524	30,112	29,588	30,165
MSW disposed in landfills for non hazardous waste	17,432	22,459	21,917	17,226	15,015	7,819	7,432	6,927	6,486
Assimilated MSW disposed in landfills for non hazardous waste	2,828	2,978	2,825	2,914	3,508	3,222	2,513	3,899	3,512
Sludge disposed in managed landfills for non hazardous waste	2,454	1,531	1,326	544	348	387	378	342	330
Total Waste to managed landfills for non hazardous waste	16,363	21,897	26,069	20,684	18,871	11,428	10,322	11,167	10,327
Total Waste to unmanaged landfills for non hazardous waste	6,351	5,071	0	0	0	0	0	0	0
Total Waste to landfills for non hazardous waste	22,714	26,968	26,069	20,684	18,871	11,428	10,322	11,167	10,327

7.2.2 **Biological treatment of waste (5B)**

Under this category, NMVOC and NH₃ emissions from compost production and from anaerobic digestion are reported.

The amount of waste treated in biological treatments has shown a great increase from 1990 to 2018 (from 283,879 Mg to 7,192,286 Mg for composting and from 0 to 86,095 Mg of N-excreted from manure management).

Information on input waste to composting plants is published yearly by ISPRA since 1996, including data for 1993 and 1994 (ANPA, 1998; APAT-ONR, several years; ISPRA, several years [a]), while for 1987 and 1995 only data on compost production are available (MATTM, several years [a]; AUSITRA-Assoambiente, 1995); on the basis of this information the whole time series has been reconstructed.

The composting plants are classified in two different kinds: the plants that treat a selected waste (food, market, garden waste, sewage sludge and other organic waste, mainly from the agro-food industry); and the mechanical-biological treatment plants, that treat the unselected waste to produce compost, refuse derived fuel (RDF), and a waste with selected characteristics for landfilling or incinerating system.

It is assumed that 100% of the input waste to the composting plants from selected waste is treated as compost, while in mechanical-biological treatment plants 30% of the input waste is treated as compost on the basis of national studies and references (Favoino and Cortellini, 2001; Favoino and Girò, 2001). NMVOC emission factor (51g NMVOC kg-1 treated waste) is from international scientific literature too (Finn and Spencer, 1997).

NH₃ emissions from biogas facilities (anaerobic digesters) in the agriculture sector have been updated on the basis of the study carried out by CRPA (CRPA, 2018) and in particular data relative to the percentages of the different substrates that feed the anaerobic digesters and data relative to the average content of volatile solids by type of substrates have been changed. As a result of these changes, the amount of manure sent to the digesters decreases considerably and also the NH₃ emissions. These emissions have been subtracted from 3B

manure management category (cattle, swine and poultry) and allocated in the anaerobic digestion at biogas facilities (5B2 of the waste sector).

7.2.3 Waste Incineration (5C1a - 5C1b)

Regarding waste incineration, methodology used for estimating emissions is based on and consistent with the EMEP/CORINAIR Guidebook (EMEP/EEA, 2016).

In this sector only emissions from facilities without energy recovery are reported, whereas emissions from waste incineration facilities with energy recovery are reported in the Energy Sector 1A4a because energy produced in incinerators is still prevalently used to satisfy the internal energy demand of the plants (auto production) and in this sense it would be wrong, according to the guidelines, to report them under 1A1a Public Electricity and Heat Production instead of 1A4a. In 2018, about 99% of the total amount of waste incinerated is treated in plants with energy recovery system.

Existing incinerators in Italy are used for the disposal of municipal waste, together with some industrial waste, sanitary waste and sewage sludge for which the incineration plant has been authorized by the competent authority. Other incineration plants are used exclusively for industrial and sanitary waste, both hazardous and not, and for the combustion of waste oils, whereas there are plants that treat residual waste from waste treatments, as well as sewage sludge.

A complete database of the incineration plants is now available, updated with the information reported in the yearly report on waste production and management published by ISPRA (APAT-ONR, several years; ISPRA, several years). For each plant a lot of information is reported, among which the year of the construction and possible upgrade, the typology of combustion chamber and gas treatment section, energy recovery section (thermal or electric), and the type and amount of waste incinerated (municipal, industrial, etc.). A specific emission factor is therefore used for each pollutant combined with plant specific waste activity data.

In Table 7.3, emission factors for each pollutant and waste typology are reported. Emission factors have been estimated on the basis of a study conducted by ENEA (De Stefanis P., 1999), based on emission data from a large sample of Italian incinerators (FEDERAMBIENTE, 1998; AMA-Comune di Roma, 1996), legal thresholds (Ministerial Decree 19 November 1997, n. 503 of the Ministry of Environment; Ministerial Decree 12 July 1990) and expert judgements. For PCB and HCB emission factors published on the Guidebook EMEP/EEA (EMEP/CORINAIR, 2007) in the relevant chapters are used, a survey on HCB emission factor from sludge incineration is currently underway.

Since 2010, emission factors for urban waste incinerators have been updated on the basis of data provided by plants (ENEA-federAmbiente, 2012; De Stefanis P., 2012) concerning the annual stack flow, the amount of waste burned and the average concentrations of the pollutants at the stack. As the emission factors are considerably lower than the old ones due to the application of very efficient abatement systems it was necessary to apply a linear smoothing methodology assuming a progressive application of the abatement systems between 2005 and 2010. In a similar way, emission factors for industrial waste incinerators have been updated from 2010 onwards on the basis of the 2019 EMEP/EEA Guidebook. Similarly to municipal waste smoothing has been applied between 2005 and 2010 supposing a linear application of the abatement systems.

Table 7.3 *Emission factors for waste incineration*

Air Pollutant	u. m	Munici pal 1990- 2009	Munici pal since 2010	Industr ial 1990- 2009	Industr ial since 2010	Clinical 1990- 2009	Clinical since 2010	Sludge 1990- 2009	Sludge since 2010	Oil 1990- 2009	Oil since 2010
NOx	kg/t	1.15	0.62	2.00	2.00	0.60	0.60	3.00	3.00	2.00	2.00
CO	kg/t	0.07	0.07	0.56	0.56	0.08	0.08	0.60	0.60	0.08	0.08
NMVOC	kg/t	0.46	0.46	7.40	7.40	7.40	7.40	0.25	0.25	7.40	7.40
SO ₂	kg/t	0.39	0.02	1.28	1.28	0.03	0.03	1.80	1.80	1.28	1.28
PM10	g/t	46.00	6.06	240.00	0.70	25.68	25.68	180.00	41.00	240.00	0.07
PM2.5	g/t	46.00	6.06	240.00	0.40	25.68	25.68	180.00	11.00	240.00	0.04
As	g/t	0.05	0.02	0.12	0.00	0.00	0.00	0.50	0.24	0.12	0.00
Cu	g/t	1.00	0.00	1.20	0.12	0.56	0.56	10.00	2.00	1.20	0.01

Air Pollutant	u. m	Munici pal 1990- 2009	Munici pal since 2010	Industr ial 1990- 2009	Industr ial since 2010	Clinical 1990- 2009	Clinical since 2010	Sludge 1990- 2009	Sludge since 2010	Oil 1990- 2009	Oil since 2010
Se	g/t	0.01	0.01	0.01	0.00	0.04	0.04	-	0.01	0.01	0.00
Zn	g/t	0.02	0.02	12.60	1.26	-	-	10.00	3.30	12.60	0.13
Cd	g/t	0.25	0.01	0.80	0.01	0.00	0.00	1.20	0.80	0.80	0.00
Cr	g/t	0.45	0.00	1.60	0.16	0.01	0.01	3.00	0.70	1.60	0.02
Hg	g/t	0.15	0.03	0.80	0.01	0.04	0.04	1.20	1.15	0.80	0.01
Ni	g/t	16.35	0.00	0.80	0.01	0.03	0.03	3.00	0.40	0.80	0.00
Pb	g/t	1.35	1.04	24.00	0.13	0.02	0.02	3.00	0.40	24.00	0.01
PAH	g/t	0.05	0.00	0.48	0.00	0.00	0.00	0.60	0.00	0.48	0.00
PCB	g/t	0.01	0.00	0.01	0.00	0.02	0.02	0.01	0.00	-	-
НСВ	g/t	0.00	0.00	0.00	0.00	0.02	0.02	0.50	0.00	-	-

Concerning dioxin emissions, clinical and industrial emission factors are also derived from data collected from a large sample of Italian incinerators and legal thresholds, as well as expert judgement; in particular for municipal solid waste, emission factors vary within the years and the facility on the basis of plant technology (i.e. typology of combustion chamber and gas treatment section) and the year of the upgrade. This site specific evaluation has been possible thanks to a study conducted in the past for a sample of municipal waste incinerators located in Regione Lombardia in order to produce an assessment of field-based values applicable to other facilities with the same characteristics (Pastorelli et al., 2001) and, since 2010 urban waste data, thanks to the abovementioned survey (ENEA-federAmbiente, 2012). Moreover, for the incineration plants reported in the national EPER/PRTR register, verification of emissions has been carried out.

In Table 7.4 dioxin emission factors for waste incineration are reported for 1990 and 2018.

Table 7.4 Dioxin emission factors for 1990 and 2018

Waste Typology	u.m	1990	2018
Municipal	g/t	115 - 1.6	0.1
Clinical	g/t	200	0.5
Industrial	g/t	80 - 135	0.5
Sludge	g/t	77	0.5
Oil	g/t	200	0.5

In Table 7.5 activity data are reported by type of waste.

Table 7.5 *Amount of waste incinerated by type (Gg)*

Waste incinerated	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Gg					
Total waste	1,656.2	2,149.1	3,061.7	4,964.2	6,977.3	6,797.3	6,707.3	7,001.4	7,390.9
with energy recovery	911.2	1,557.8	2,749.7	4,720.6	6,795.9	6,614.6	6,515.6	6,793.1	7,272.5
without energy recovery	745.0	591.3	312.0	243.5	181.4	182.7	191.6	208.3	118.3
Municipal waste (5C1a)	1,025.6	1,436.6	2,324.9	3,219.9	4,336.9	4,733.0	4,256.6	4,314.0	4,711.7
with energy recovery	626.4	1,185.5	2,161.4	3,168.0	4,284.0	4,695.0	4,255.1	4,314.0	4,711.7
without energy recovery	399.2	251.1	163.5	51.9	52.9	38.0	1.5	0.0	0.0
Industrial waste (5C1b i-ii-iv)	496.1	560.7	626.5	1,618.1	2,505.3	1,961.1	2,332.4	2,589.4	2,580.5

Waste incinerated	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Gg					
with energy recovery	259.5	331.2	511.6	1,447.0	2,399.4	1,849.0	2,190.4	2,430.1	2,516.6
without energy recovery	236.6	229.6	114.8	171.1	105.9	112.2	142.0	159.3	63.9
Clinical waste (5C1biii)	134.5	151.7	110.3	126.2	135.1	103.1	118.2	97.9	98.7
with energy recovery	25.3	41.1	76.7	105.7	112.5	70.6	70.1	49.0	44.2
without energy recovery	109.2	110.6	33.6	20.5	22.6	32.5	48.1	49.0	54.5

7.2.4 Cremation of corpses (5C1bv)

Emissions from incineration of human bodies in crematoria have been carried out for the entire time series. The methodology used for estimating emissions is based on and conform to the EMEP/EEA Air Pollutant Emission Inventory Guidebook (EMEP/EEA, 2019).

Activity data have been supplied by a specific branch of Federutility, which is the federation of energy and water companies (SEFIT, several years), whereas emission factors derive from a survey carried out by the same subject in 2015. For some metal, such as Pb, Cd, As, Cr, Cu, Ni and Se EFs are those reported in the Guidebook 2019.

Up to some years ago cremation was not so popular in Italy also because the Catholic Church encouraged burial. Partly because cemeteries are becoming overcrowded, the number of cremations in Italy has risen from 5,809 in 1990 to 183,146 in 2018. Moreover, it is practice to cremate also mortal remains: activity data have been supplied too by SEFIT, from 1999, whereas mortal remains from 1990 to 1998 have been reconstructed on the basis of an expert judgment (SEFIT, several years).

In Table 7.6 time series of number of cremations, mortal remains, as well as annual deaths and crematoria in Italy are reported. The major emissions from crematoria are nitrogen oxides, carbon monoxide, sulphur dioxide, particulate matter, mercury, hydrogen fluoride (HF), hydrogen chloride (HCl), NMVOCs, other heavy metals, and some POPs. In Table 7.7 emission factors for cremation are reported.

Table 7.6 *Cremation time series (activity data)*

Cremation of corpses	1990	1995	2000	2005	2010	2015	2016	2017	2018
Cremations	5,809	15,436	30,167	48,196	77,379	137,168	141,555	170,903	183,146
Deaths	543,700	555,203	560,241	567,304	587,488	653,000	615,261	649,061	633,133
Mortal remains	1,000	1,750	1,779	9,880	18,899	34,178	36,608	36,425	37,538
% of cremation	1.07	2.78	5.38	8.50	13.17	21.01	23.01	26.33	28.93
Crematoria	ND	31	35	43	53	70	75	79	83

Table 7.7 Emission factors for cremation of corpses

Air pollutant	u.m.	Cremation
NOx	kg/body	0.4238
CO	kg/body	0.0398
NMVOC	kg/body	0.0091
SO_X	kg/body	0.0234
PM10	g/body	2.93
PM2.5	g/body	2.93
Pb	mg/body	30.03
Cd	mg/body	5.03
Hg	mg/body	0.0059
As	mg/body	13.61
Cr	mg/body	13.56
Cu	mg/body	12.43

Ni	mg/body	17.33
PAH (benzo(a)pyrene)	μg/body	38.90
Dioxins	μg/body	0.0322

7.2.5 Small scale waste burning (5C2)

The open burning of agricultural waste is a key category for Cd emissions. Dioxins, TSP, PM10, PM2.5, BC, CO, NMVOC, PAH, SO_{X_1} NO_X and heavy metals emissions have been estimated. No estimations were performed for NH₃ emissions as well as other POPs.

A country-specific methodology has been used. Parameters taken into consideration are the following:

- 1. Amount of removable residues (t), estimated with annual crop production (ISTAT, several years [a], [b]; ISTAT, 2017 [a], [b]) and removable residues/product ratio (IPCC, 1997; CESTAAT, 1988; Borgioli E., 1981).
- 2. Amount of dry residues in removable residue (t dry matter), calculated with amount of removable fixed residues and fraction of dry matter (IPCC, 1997; CESTAAT, 1988; Borgioli E., 1981).
- 3. Amount of removable dry residues oxidized (t dry matter), assessed with amount of dry residues in the removable residues, burnt fraction of removable residues (CESTAAT, 1988) and fraction of residues oxidized during burning (IPCC, 1997).
- 4. Amount of carbon from removable residues burning release in air (t C), calculated with the amount of removable dry residue oxidized and the fraction of carbon from the dry matter of residues (IPCC, 1997; CESTAAT, 1988).
- 5. C-CH₄ from removable residues burning (t C-CH₄), calculated with the amount of carbon from removable residues burning release in air and default emissions rate for C-CH₄, equal to 0.005 (IPCC, 1997).
- 6. C-CO from removable residues burning (t C-CO), calculated with the amount of carbon from removable residues burning release in air and default emissions rate for C-CO, equal to 0.06 (IPCC, 1997).
- 7. Amount of nitrogen from removable residues burning release in air (t N), calculated with the amount of removable dry residue oxidized and the fraction of nitrogen from the dry matter of residues. The fraction of nitrogen has been calculated considering raw protein content from residues (dry matter fraction) divided by 6.25.
- 8. N-NO_X from removable residues burning (t N-NO_X), calculated with the amount of nitrogen from removable residues burning release in air and the default emissions rate for N- NO_X, equal to 0.121 (IPCC, 1997).

NMVOC emissions have been considered equal to CH₄ emissions. As regards the other pollutants, heavy metals, Dioxin and PAH emission factors are from the EMEP/EEA Guidebook (EMEP/EEA, 2016) and emissions have been added as requested by the NECD review process (EEA, 2018) (Table 7.8).

 Table 7.8 Emission factors for burning of agriculture residues

Air pollutant	u.m.	Remov	able resid	lues		References		
		Wheat -	– Barley –	-Rice – C	rchards			
Benzo(a)pyrene	g/t	67.7	98.8	19	1.5			
Benzo(b)fluoranthene	g/t	189.1	307.4	31.5	2.8	EMED/EEA 2016		
Benzo(k)fluoranthene	g/t	80.7	77	23.1	6.2	EMEP/EEA, 2016		
Indeno(1,2,3-cd)pyrene	g/t	57.9	38.2	14.5				
PM10	g/t		3.	.3		EMEP/CORINAIR, 2007		
PM2.5	g/t		2.	.8		EMEP/CORINAIR, 2007		
Dioxins	g/t		1	0		EMEP/CORINAIR, 2016		
BC	g/t		1.	.2		EMEP/EEA, 2013		

Removable residues from agriculture production are estimated for each crop type (cereal, green crop, permanent cultivation) taking into account the amount of crop produced, from national statistics (ISTAT, several years [a], [b]; ISTAT, 2017 [a], [b]), the ratio of removable residue in the crop, the dry matter content of removable residue, the ratio of removable residue burned, the fraction of residues oxidised in burning, the carbon and nitrogen content of the residues. Most of these wastes refer especially to the prunes of olives and wine, because of the typical national cultivation. Activity data (agricultural production) used for estimating burning of agriculture residues are reported in Table 7.9. Emissions due to stubble burning, which are emissions only from the agriculture residues burned on field, are reported in the agriculture sector, under 3.F. Under the waste sector the burning of removable agriculture residues that are collected and could be managed in different ways (disposed in landfills, used to produce compost or used to produce energy) is reported. Different percentages of the removable agriculture residue burnt for different residues are assumed, varying from 10% to 90%, according to national and international literature. Moreover, these removable wastes are assumed to be all burned in open air (e.g. on field), taking in consideration the highest available CO, NMVOC, PM and dioxins emission factors as reported in the table above. The amount of biomass from pruning used for domestic heating is reported in the energy sector in the 1A4b category as biomass fuel.

Table 7.9 *Time series of crop productions (Gg)*

Productio n	1990	1995	2000	2005	2010	2015	2016	2017	2018
				Gg					
Cereals									
Wheat	8,108.5	7,946.1	7,427.7	7,717.1	6,849.9	7,394.5	8,037.9	6,966.5	6,932.9
Rye	20.8	19.8	10.3	7.9	13.9	13.2	13.2	11.1	10.6
Barley	1,702.5	1,387.1	1,261.6	1,214.1	944.3	955.1	988.3	984.3	1,010.3
Oats	298.4	301.3	317.9	429.2	288.9	261.4	260.8	229.0	243.4
Rice	1,290.7	1,320.9	1,245.6	1,444.8	1,574.3	1,505.8	1,598.0	1,512.2	1,451.3
Maize	5,864	8,454	10,140	10,428	8,496	7,074	6,839	6,048	6,179
Sorghum	114.2	214.8	215.2	184.9	275.6	294.2	313.8	240.7	293.9
Woody crops									
Grapes	8,438.0	8,447.7	8,869.5	8,553.6	7,839.7	7,915.0	8,044.1	7,169.7	8,513.6
Olives	912.5	3,323.5	2,810.3	3,774.8	3,117.8	2,732.9	2,016.0	2,598.5	1,953.5
Citrus Orchards	2,868.8	2,607.7	3,100.2	3,518.1	3,820.6	3,151.5	2,766.4	2,811.3	2,631.3
Orchards	5,793.5	5,406.6	5,952.2	6,034.5	5,777.3	5,988.8	5,927.5	5,360.3	5,608.0
Carobs	29.2	44.4	38.1	31.7	25.3	31.5	28.9	28.9	37.0
Total	35,441	39,474	41,388	43,339	39,023	37,318	36,834	33,961	34,865

7.2.6 Wastewater treatments (5D)

The biogas collected from the anaerobic digestion of wastewaters is burned with heat/energy recovery and relevant emissions are reported in the energy sector. As regards NMVOC emissions from wastewater handling, consequently to the NECD review (EEA, 2017 [a]) Italy started a survey to find reliable EFs, trying to consider the distribution of waste water treatments. By using EFs from the 2019 EEA/EMEP Guidebook both for domestic and industrial wastewater and the volumes of wastewater produced NMVOC emissions resulted in the time series reported in the table below (Table 7.10)

Table 7.10 *Time series of NMVOC emissions (Gg)*

	1990	1995	2000	2005	2010	2015	2016	2017	2018
Gg									
NMVOC - Industrial wastewater	0.014	0.014	0.014	0.013	0.011	0.010	0.010	0.010	0.011
NMVOC - Domestic wastewater	0.064	0.082	0.090	0.101	0.105	0.103	0.117	0.119	0.121
Total	0.077	0.096	0.104	0.114	0.116	0.113	0.127	0.129	0.131

7.2.7 **Other waste (5E)**

On the basis of the Final review report of the 2017 Comprehensive technical review of national emission inventories (EEA, 2017 [a]) emissions from category 5E – Car and Building Fires have been estimated. Buildings have been subdivided into 4 subcategories: detached house, undetached house, apartment buildings and industrial buildings and the distribution of population in the different typology of building has been derived from Eurostat. Data regarding the number of car and building fires have been derived from the Annually statistics of fire service in Italy (Annually statistics of fire service in Italy, several years) while EFs are coherent with the Guidebook EMEP/EEA 2016 deriving from Aasestad, 2007 for particulate matter (TSP=PM10=PM2.5) while BC EF has been derived from IIASA report (IIASA, 2004). In the current submission, because EFs for house fires from Aasestad are given by scaling the emission factors used for combustion of fuelwood in the households, so referring prevalently to wooden houses, activity data have been updated consequently and taking into account only fires that involved wood, cork and wooden load-bearing structures as reported in the (Annually statistics of fire service in Italy, several years). No data about car and building fires are available before 2000 so 90's data have been reconstructed on the basis of the national population and the resulting time series are reported in Tab. 7.10. On the basis of the draft review report of the 2019 NECD review (EEA, 2019) PCDD/F emissions have been estimated too.

Table 7.11 *PM2.5* and *BC* emissions from the category 5E

	1990	1995	2000	2005	2010	2015	2016	2017	2018
Detached house fires (n°)	1,252	1,257	1,268	1,288	1,044	1,198	1,378	1,778	1,316
Undetached house fires (n°)	969	972	981	997	785	1,456	1,676	2,162	1,600
Apartment building fires (n°)	2,230	2,239	2,259	2,294	2,140	2,952	3,397	4,383	3,244
Industrial building fires (n°)	583	586	591	600	517	618	481	329	258
Car fires (n°)	25,867	25,971	26,203	26,614	22,735	22,680	22,696	23,537	22,761
5E PM2.5 (Gg)	0.413	0.414	0.418	0.425	0.359	0.460	0.516	0.644	0.489
5E BC (Gg)	0.076	0.077	0.077	0.079	0.066	0.085	0.095	0.119	0.091
5E PCDD/F (g Iteq)	4.783	4.803	4.845	4.921	4.162	5.181	5.737	7.049	5.476

7.3 TIME SERIES AND KEY CATEGORIES

The following Table 7.12 presents an outline of the weight of the different categories for each pollutant in the waste sector for the year 2018. Key categories are those shaded.

Table 7.12 Key categories in the waste sector in 2018

	5A	5B1	5B2	5C1bi	5C1biii	5C1biv	5C1bv	5C2	5D1	5D2	5E
						%					
SO_x				0.04	0.001	0.03	0.00	0.07			
NO_x				0.01	0.003	0.01	0.01	0.27			
NH ₃	1.60	0.05	0.82								
NMVOC	0.79	0.04		0.03	0.03	0.001	0.0003	0.24	0.01	0.00	
CO				0.001	0.0001	0.001	0.000	2.11			
PM10	0.00			0.000	0.0005	0.000	0.000	1.35			0.28
PM2.5	0.00			0.00	0.0007	0.000	0.000	1.44			0.34
BC				0.000	0.0002	0.0000		4.66			0.49
Pb				0.00	0.0004	0.00	0.003096	1.06			
Cd				0.01	0.0008	0.27	0.02082	9.54			
Hg				0.00	0.02	0.30	0.000				
PAH				0.00	0.00001	0.00	0.00006	1.81			
Dioxins				0.01	0.007	0.003	0.003	2.63			1.98
HCB				0.07	7.05	0.84					
PCB				0.01	0.65	0.07					

Note: key categories are shaded in blue

In addition, dioxins emissions from municipal waste are key categories at trend assessment. In particular, from 1990 dioxins emissions from waste incineration (5C1) have decreased by about 100% as a consequence of the introduction of more stringent limits of these emissions for incineration plants (see Table 7.4, Figure 7.2 and Figure 7.5).

The following pie charts show, for the main pollutants, the contribution of each sub-category to the total emissions from the waste sector, both for 1990 and 2018 (Figure 7.1, Figure 7.2, Figure 7.3 and Figure 7.4).

Finally, in Table 7.13, emissions time series for each pollutant of the waste sector are reported. In the period 1990-2018, total emissions from incineration plants increase, but whereas emissions from plants with energy recovery show a strong growth, emissions from plants without energy recovery decreased because of the legal constraints which impose the energy production. For 2018, about 99% of the total amount of waste incinerated is treated in plants with energy recovery system reported in 1A4a.

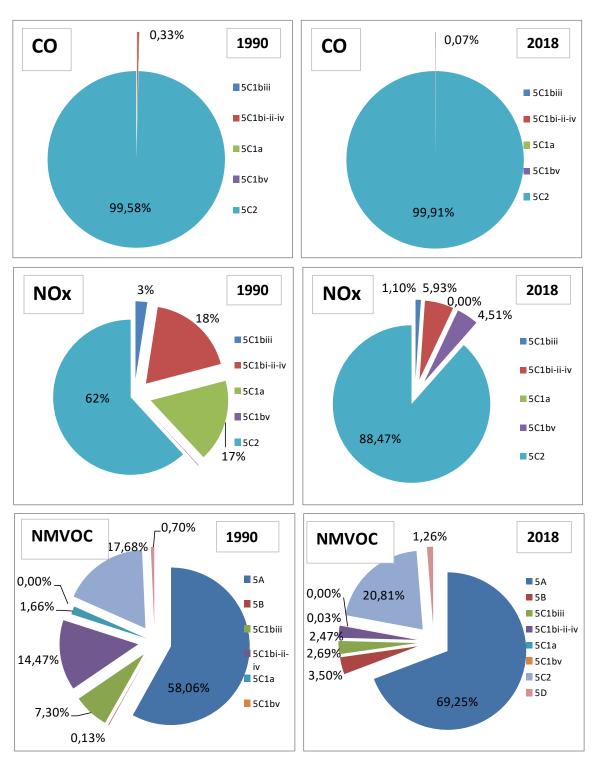
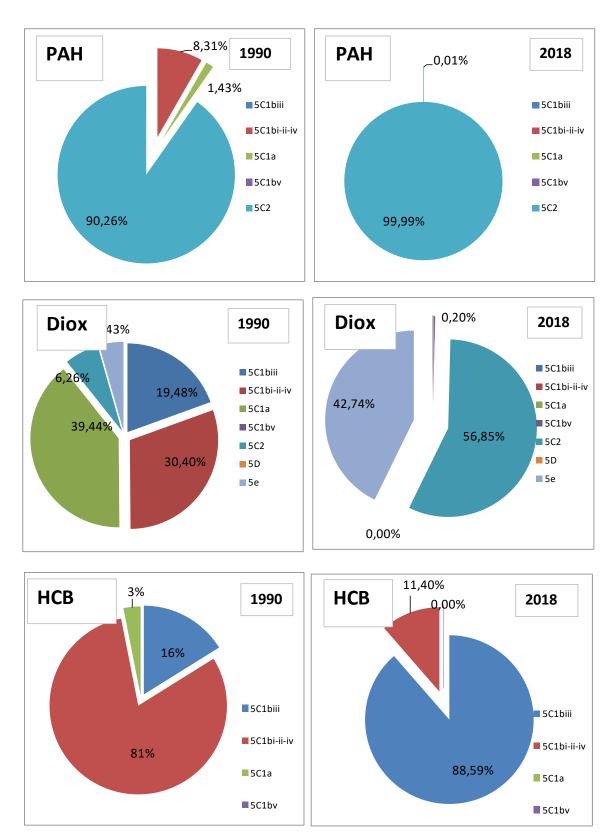
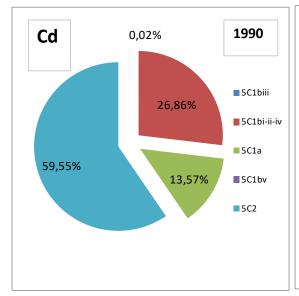
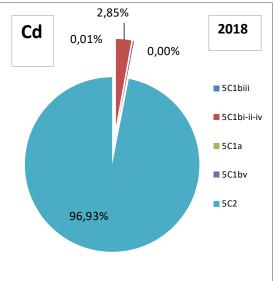
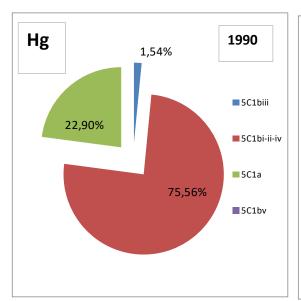
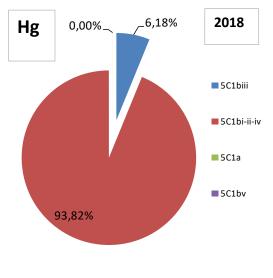
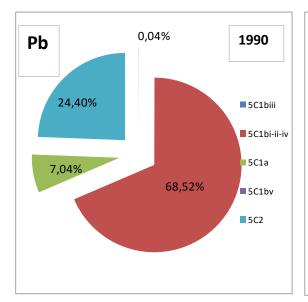


Figure 7.1 Contribution of CO, NO_X and NMVOC sub-category emissions to waste sector total emissions


Figure 7.2 Contribution of POPs Annex III sub-category emissions to waste sector total emissions

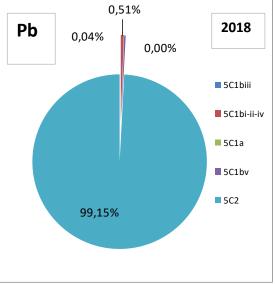


Figure 7.3 Contribution of priority heavy metals sub-category emissions to waste sector total emissions

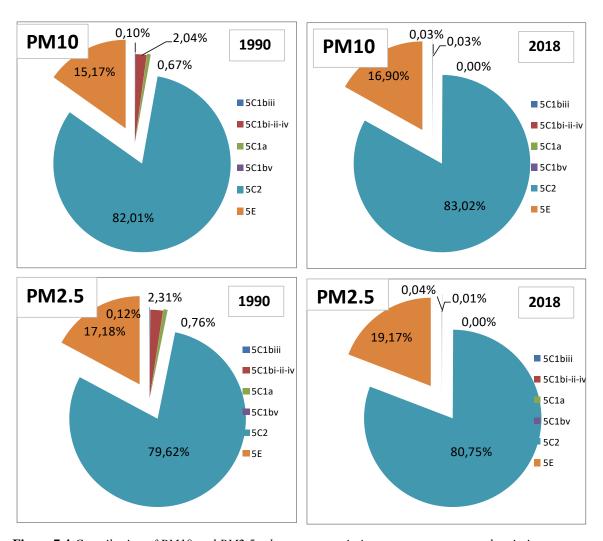


Figure 7.4 Contribution of PM10 and PM2.5 sub-category emissions to waste sector total emissions

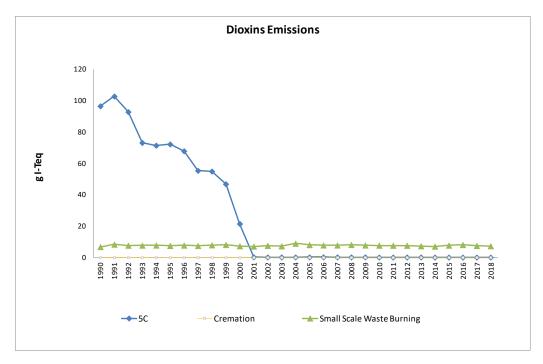


Figure 7.5 Time series of dioxin emissions of the waste sector by category (g I-Teq)

Table 7.13 *Time series emissions in the waste sector by category and pollutant*

WASTE SECTOR	1990	1995	2000	2005	2010	2015	2016	2017	2018
Solid waste disposal (5A)									
NMVOC (Gg)	6.43	7.97	9.06	8.96	8.20	7.36	7.18	7.19	7.22
NH_3 (Gg)	5.21	6.46	7.35	7.26	6.65	5.97	5.82	5.83	5.85
PM10 (Gg)	0.004	0.006	0.005	0.004	0.004	0.002	0.002	0.002	0.002
PM2.5 (Gg)	0.0007	0.0008	0.0008	0.0007	0.0006	0.0004	0.0003	0.0004	0.0003
Biological treatment of waste (5B)									
NMVOC (Gg)	0.01	0.03	0.14	0.28	0.36	0.37	0.38	0.37	0.37
NH_3 (Gg)	0.01	0.06	0.09	0.29	0.41	2.53	2.98	3.10	3.16
Waste incineration (5C)									
CO (Gg)	40.68	46.90	45.37	50.46	47.17	47.04	48.90	45.97	44.01
$NO_x(Gg)$	2.68	2.80	2.35	2.55	2.30	2.21	2.20	2.15	2.08
NMVOC (Gg)	4.55	4.75	3.26	3.78	3.25	2.90	3.02	2.79	2.71
$SO_{x}(Gg)$	0.55	0.49	0.30	0.34	0.23	0.18	0.15	0.17	0.16
PM10 (Gg)	2.31	2.54	2.45	2.68	2.53	2.53	2.66	2.46	2.41
PM2.5 (Gg)	1.99	2.19	2.10	2.31	2.17	2.17	2.28	2.11	2.06
BC (Gg)	0.81	0.89	0.87	0.95	0.91	0.91	0.96	0.89	0.87
PAH (t)	1.40	1.45	1.37	1.45	1.21	1.26	1.34	1.21	1.21
Dioxins (g I-Teq))	103.22	79.68	28.76	8.18	7.73	7.73	8.11	7.51	7.34
HCB (kg)	12.86	13.96	9.87	8.26	0.48	0.97	0.90	0.82	0.81
PCB (kg)	5.36	4.61	2.06	1.52	0.53	1.02	0.95	0.86	0.86
As (t)	0.17	0.21	0.18	0.21	0.17	0.16	0.15	0.16	0.15
Cd (t)	0.74	0.81	0.69	0.75	0.55	0.57	0.57	0.54	0.52
Cr (t)	0.68	0.62	0.38	0.43	0.12	0.13	0.12	0.12	0.12
Cu (t)	1.26	1.31	0.97	0.97	0.54	0.55	0.47	0.51	0.48
Hg (t)	0.26	0.23	0.12	0.15	0.01	0.03	0.01	0.02	0.02
Ni (t)	6.76	4.34	2.81	1.02	0.01	0.01	0.01	0.01	0.01
Pb (t)	7.65	8.09	5.19	6.83	2.76	2.55	2.34	2.43	2.28
Se (t)	0.10	0.14	0.13	0.15	0.13	0.13	0.12	0.12	0.12
Zn (t)	40.00	62.50	57.93	67.67	57.68	53.64	46.88	50.69	46.90
Wastewater (5D) NMVOC (Gg)	0.08	0.10	0.10	0.11	0.12	0.11	0.13	0.13	0.13
Other waste (5E)									
PM2.5 (Gg)	0.41	0.41	0.42	0.42	0.36	0.46	0.52	0.64	0.49
BC (Gg)	0.08	0.08	0.08	0.08	0.07	0.09	0.10	0.12	0.09
PCDD/F (g I-Teq)	4.78	4.80	4.85	4.92	4.16	5.18	5.74	7.05	5.48

7.4 RECALCULATIONS

In the following table the recalculations occurred in the 2020 submission with respect the last year submission are reported at category level.

Table 7.14 Recalculations in the waste sector by category and pollutant

WASTE SECTOR	1990	1995	2000	2005	2010	2015	2016	2017
Solid waste								
disposal (5A)								
NMVOC	-	-	-	-	-	-	-	-
NH_3	-	-	-	-	-	-	-	-
PM10 (Gg)	NA	NA	NA	NA	NA	NA	NA	NA
PM2.5 (Gg)	NA	NA	NA	NA	NA	NA	NA	NA
Biological								
treatment of waste								
(5B)								
NMVOC	-	-	-	-	-	-	-	-
NH ₃	-	-1%	0%	0%	1%	2%	16%	16%
Waste incineration								
(5C)								
CO	0%	0%	0%	0%	0%	0%	0%	0%
NO_x	0%	0%	0%	0%	0%	1%	1%	3%
NMVOC	0%	0%	0%	0%	0%	0%	0%	-2%
SO_x	-1%	0%	-3%	-5%	-15%	-31%	-34%	-29%
PM10	0%	0%	0%	0%	-1%	-1%	0%	0%
PM2.5	0%	0%	0%	0%	-1%	-1%	0%	0%
BC	0%	0%	0%	0%	0%	0%	0%	0%
PAH	0%	0%	0%	0%	-4%	-2%	-1%	-2%
Dioxins	0%	0%	0%	0%	0%	0%	0%	0%
HCB	0%	0%	0%	0%	-86%	-93%	-73%	-75%
PCB	0%	0%	0%	0%	-46%	-14%	-15%	-21%
As	200%	333%	538%	621%	944%	874%	1981%	2162%
Cd	0%	0%	0%	0%	-13%	-6%	-5%	-3%
Cr	15%	20%	35%	34%	-30%	-2%	57%	67%
Cu	36%	65%	102%	139%	180%	74%	291%	339%
Hg	0%	0%	0%	0%	-89%	-48%	-79%	-37%
Ni	0%	0%	0%	0%	-94%	-86%	-85%	-72%
Pb	32%	51%	100%	77%	12%	190%	165%	181%
Se	854%	1505%	3148%	6021%	6084%	6724%	6130%	6398%
Zn	1263%	2103%	4031%	3097%	4271%	7871%	9179%	10137%
Wastewater (5D)								
NMVOC	-	-	-	-	-	-	-	-
Other waste (5E)								
PM2.5	-86%	-86%	-86%	-86%	-87%	-86%	-87%	-85%
BC	-86%	-86%	-86%	-86%	-87%	-86%	-87%	-85%
PCDD/F (g I-Teq)	NA	NA	NA	NA	NA	NA	NA	NA

Estimates of PM emissions have been included in the inventory for solid waste disposed on landfills.

About biological treatment, NH₃ emissions recalculations, as mentioned above, occurred due to the estimates of emissions from anaerobic digestion, in particular changes occurred in the estimate of N from manure management.

As regards incineration, recalculations occur for the introduction of heavy metals emissions from 5C2 for the entire time series; more information is given in the paragraph 6.4. As reported above, Emission factors for industrial incinerators have been updated resulting in reduction since 2006 (also considering the smoothing between 2006 and 2009) for heavy metals, PCB and HCB. Cremation EFs have been updated too.

Recalculations in the category 5E occurred because of the reconstruction of the activity data time series considering only fires that involved wood elements.

The analysis regarding incineration plants has been conducted through verifications and comparisons with data reported in E-PRTR registry, Emissions Trading Scheme and updated data of incinerated waste amount by plants.

7.5 PLANNED IMPROVEMENTS

Emissions from flaring of exceeding biogas in landfills and wastewater treatment plants are under investigation and will be included in further submissions.

8 RECALCULATIONS AND IMPROVEMENTS

8.1 RECALCULATIONS

To meet the requirements of transparency, consistency, comparability, completeness and accuracy of the inventory, the entire time series is checked and revised every year during the annual compilation of the inventory. Measures to guarantee and improve these qualifications are undertaken and recalculations should be considered as a contribution to the overall improvement of the inventory.

Recalculations are elaborated on account of changes in the methodologies used to carry out emission estimates, changes due to different allocation of emissions as compared to previous submissions, changes due to error corrections and in consideration of new available information.

The complete NFR files from 1990 to 2018 have been submitted. The percentage difference between the time series reported in the 2019 submission and the series reported this year (2020 submission) are shown in Table 8.1 by pollutant.

Improvements in the calculation of emission estimates have led to a recalculation of the entire time series of the national inventory. Considering the total emissions, the emission levels for the year 2017 show a decrease for some pollutants and an increase for others; in particular, according to the review process and on the basis of EMEP/EEA 2019 Guidebook emission factor, a significant decrease has been observed for PCB emissions, equal to 38.4%, mainly due to the update of emission factors for combustion of liquid fuel ni energy production, and for heavy metals, Pb, Cd and Hg, more than 20%, and HCB (-4.9%) due to the update of emission factors for industrial waste incineration. Recalculation of PAH emissions (-7.3%) is due to the update, according to the review process, of the coke production emission factor. The decrease of BC emissions (-7.3%) is due prevalently to updates of emission factors in the waste e road transport sectors, while PM2.5 emissions decrease (-1.7%) results from a decrease of emissions due to the update of emission factors in the waste sectors and the increase due to the addition of some categories in the solvent sector, according to the review process. NO_X decrease (-5.3%) and NMVOC increase (1.3%) are due mainly to the revision of road transport time series distribution of mileages according to the relevant information and parameters available at national level. The decrease of NH3 of 1.2% results from different recalculations in the agriculture sector while the increase of Dioxin emissions (+2-9%) is due to the introduction of new categories in the waste sector according to the review. For the other pollutants recalculations for 2017 are less than 1%.

In the *energy* sector a further revision of the emission estimates regarded the road transport sector. Specifically, the upgraded version of COPERT model, COPERT 5.2.2 (EMISIA SA, 2019), has been applied to calculate emissions of all pollutants for the whole period 1990-2018, revising the distribution of fuels and average mileages for the different classes of vehicles. It resulted in a recalculation of the time series for all the pollutants. The complete time series, for the whole time series, of liquid fuel consumptions, for energy production and combustion in industry (1.A.1 and 1.A.2), have been updated on the basis of figures submitted by the Ministry of Economic Development to the Joint Questionnaire IEA/OECD/EUROSTAT resulting in recalculation of stationary combustion emissions. For residential stationary combustion the distribution of biomass combustion by technologies has been revised from 2015 based on additional information collected at regional level. For the stationary fuel combustion categories, minor updates occurred for the last years, in the sector 1A1, 1A2, 1A4, affecting EF and activity data based on new information.

In the *industrial processes* sector, recalculations occurred because of the update of PM10 emission factor for cement process and the estimates of PAH emissions from coke oven door leakage currently in industrial processes, according to the recommendation of the review (EEA, 2019).

For the *solvent* sector minor recalculations occurred because of activity data in the manufacture of automobiles and the update of the NMVOC emission factor for metal degreasing, for the whole time series, according to the review process (EEA, 2019).

In 2020, recalculations were implemented for the *agricultural* emission inventory. As recommends by the 2019 NECD review (EEA, 2019), emissions of NOx and NH₃ from turkeys have been estimated and reported in category 3B4giii. The N excreted for other poultry has been updated from the year 2005 based on ISTAT statistics while the N excreted for calves, buffalo, turkeys and other poultry has been updated from the year 2016. The N excreted for dairy cattle has been updated from the year 1990 following the recommendation of the 2019 UNFCCC review. NMVOC emissions from manure storage and agricultural soils have been updated based on the changes made to N excreted for cattle and buffaloes, the poultry stocks and the NH₃ emissions from spreading. Finally, As, Cr, Cu, Ni, Se and Zn emissions from field burning of agricultural residues have been added to the estimates of the agriculture sector and HCB emissions have been modified based on the update of the emission factor, reported in the 2019 EMEP/EEA Guidebook. About biological treatment, NH₃ emissions recalculations occurred due to the estimates of emissions from anaerobic digestion, in particular changes occurred in the estimate of N from manure management.

As regards the *waste* sector, recalculations occur for the category 5C, for the introduction of heavy metals emissions from 5C2 for the entire time series; more information is given in paragraph 6.4. According to the review process emission factors for industrial incinerators for heavy metals, PCB and HCB have been updated resulting in emission reductions since 2006, taking in account the smoothing between 2006 and 2009. Cremation emission factors have been updated too. Recalculations in the category 5E occurred because of the reconstruction of the activity data time series considering only fires that involved wood elements

Table 8.1 Recalculation between 2019 and 2020 submissions

	SO _x	NOx	NH ₃	NMVOC	со	PM10	PM2.5	ВС	Pb	Hg	Cd	DIOX	PAH	НСВ	PCB
1990	0.00	2.05	-1.63	-1.83	-5.77	1.77	0.19	-0.28	0.27	-0.13	4.93	0.99	-4.94	54.24	-47.51
1990	0.00	2.95	-0.87	-1.69	-3.77 -4.95	2.02	0.19	0.04	0.27	-0.15	4.93	0.99	-4.94 -4.65	52.04	-46.33
1992	0.00	3.09	-0.53	-1.39	-5.05	1.93	0.49	-0.73	0.40	-0.13	4.83	0.92	-4.41	50.75	-46.94
1993	0.00	2.95	-0.53	-1.01	-3.93	1.70	0.35	-0.62	0.52	-0.04	5.00	1.03	-3.92	48.18	-44.48
1994	-0.01	3.04	-0.27	-1.01	-4.08	1.61	0.20	-1.28	0.63	-0.02	5.18	1.14	-4.20	46.39	-45.62
1995	0.01	2.51	-0.22	-0.61	-2.61	1.52	0.07	-1.27	0.67	-0.14	5.12	0.95	-3.98	42.95	-45.96
1996	-0.04	2.60	-0.07	-0.51	-2.64	1.10	-0.48	-1.86	0.70	-0.06	5.24	1.09	-4.10	48.49	-47.21
1997	-0.08	2.39	-0.06	-0.20	-2.70	1.30	-0.36	-2.33	0.81	0.01	5.27	1.15	-4.01	47.93	-44.80
1998	-0.02	2.42	-0.12	0.01	-2.40	1.95	0.10	-2.60	0.87	0.10	5.50	1.28	-4.08	39.64	-45.40
1999	0.01	2.28	-0.10	0.09	-2.40	2.05	0.02	-2.95	1.02	0.24	5.87	1.48	-3.88	14.84	-43.37
2000	0.03	1.23	-0.06	-0.11	-3.05	2.40	0.16	-2.58	1.46	0.09	5.98	1.45	-5.22	19.44	-42.70
2001	0.03	1.19	-1.00	0.13	-2.67	1.76	-0.08	-3.14	1.98	-0.49	5.97	0.94	-5.97	14.62	-43.05
2002	0.01	1.42	-0.65	0.14	-3.03	2.09	-0.19	-3.51	5.63	-0.17	7.47	1.51	-6.45	4.73	-45.60
2003	0.02	1.13	-0.45	0.50	-2.22	2.17	-0.13	-3.54	5.60	0.13	7.32	1.88	-4.62	6.22	-43.41
2004	0.02	0.89	-0.18	0.74	-1.59	2.37	-0.47	-3.69	5.63	0.42	6.67	2.35	-5.80	13.22	-42.33
2005	0.02	0.86	-0.26	0.93	-0.45	3.59	0.81	-3.96	5.31	0.26	6.04	1.96	-4.93	11.49	-37.03
2006	0.02	2.09	0.11	1.06	-0.36	4.83	1.99	-2.59	2.46	-2.24	1.20	1.48	-4.86	-0.41	-37.42
2007	0.02	1.29	-0.34	0.85	-0.43	4.21	1.79	-2.23	-7.18	10.69	-10.75	1.54	-4.64	-16.58	-37.03
2008	0.02	-1.26	-0.56	1.29	-0.14	3.27	1.17	-2.61	-9.67	13.53	-14.81	1.85	-4.10	-23.44	-37.99
2009	0.02	-1.84	-0.87	1.16	-0.24	2.80	0.83	-2.98	-14.47	19.65	-23.44	2.22	-3.37	-4.38	-48.94
2010	0.02	-2.29	-0.65	1.18	-0.23	3.05	1.00	-3.62	-16.66	18.75	-18.73	2.39	-3.90	17.48	-39.59
2011	0.01	-3.07	-0.62	1.17	-0.30	2.90	0.43	-5.90	-11.86	14.83	-13.62	2.91	-5.33	-9.47	-39.19
2012	0.00	-1.99	-0.63	1.20	-0.05	2.00	0.22	-4.72	-15.09	16.29	-17.77	2.24	-4.66	-28.39	-40.78
2013	-0.01	-3.80	0.54	1.21	-0.26	1.26	-0.48	-4.60	-17.99	20.64	-21.80	2.38	-3.61	-51.43	-42.26
2014	-0.01	-4.14	0.63	0.92	-0.46	0.90	-1.16	-7.54	-17.44	19.32	-22.06	2.16	-3.69	-47.82	-42.03
2015	-0.01	-5.54	0.42	0.25	-1.71	0.71	-1.22	-8.68	-19.08	22.85	-24.10	2.19	-7.28	-48.57	-44.22
2016	-0.02	-5.20	-1.62	0.16	-1.81	0.28	-1.58	-7.93	-21.33	26.61	-26.21	2.41	-7.39	-6.39	-40.51

8.2 PLANNED IMPROVEMENTS

Specific improvements are specified in the QA/QC plan (ISPRA, 2020[b]); they can be summarized as follows.

For the *energy* and *industrial processes* sectors, a major progress regards the harmonisation of information collected in the framework of different obligations, Large Combustion Plant, E-PRTR and Emissions Trading, thus highlighting the main discrepancies in data and detecting potential errors, and for POPs emissions the use of the results of a national research in the potential update of emission factors and methodologies. For the *agriculture* and *waste* sectors, improvements will be related to the availability of new information, on emission factors, activity data as well as parameters necessary to carry out the estimates; specifically, a study on the best available technologies used in agriculture practices and the elaboration of data from the 2016 farm structure survey and availability of information on the landfill gas combustion in landfills flaring and emissions from the exceeding biogas flared at wastewater treatment plants are under investigation.

The EMEP/EEA Guidebook 2019 chapters (EMEP/EEA, 2019) has started to be considered, for PM2.5 and BC, and update emission factors will be applied in the next year submission of the inventory with a focus to PAH, dioxin and heavy metals estimates in order to improve the accuracy and reduce the uncertainty.

The comparison between local inventories and national inventory and the meetings and exchange of information with local environmental agencies will continue.

Further analyses will concern the collection of statistical data and information to estimate uncertainty in specific sectors.

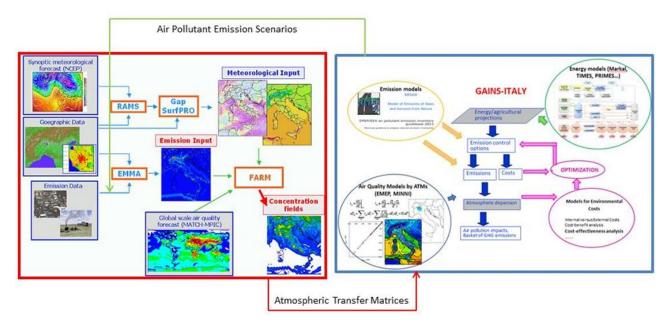
9 PROJECTIONS

The emission scenarios have become increasingly important in the definition of international, European and national policies on atmospheric pollution. The European Commission, for example, in the elaboration of the Clean Air Policy Package (COM, 2013) with the aim to further reduce the impacts of harmful emissions on human health and the environment, asked IIASA (*International Institute for Applied Systems Analysis*) to elaborate emission scenarios with the integrated assessment model GAINS-Europe (*Greenhouse Gas and Air Pollution Interactions and Synergies Model*, Amann et al., 2011) to explore the potential for environmental improvements.

Italy too has its own integrated air quality assessment model, the MINNI model (*National Integrated Model to support the International Negotiation on atmospheric pollution*, Mircea et al., 2014, 2016, 2019) an ENEA (*Italian National Agency for New Technologies, Energy and Sustainable Economic Development*) project funded by MATTM (*the Italian Ministry of Environment, Territory and Sea*) where the GAINS-Italy model (*Greenhouse Gas and Air Pollution Interactions and Synergies Model over Italy*, D'Elia et al., 2018; Ciucci et al., 2016, D'Elia et al., 2009), run by ENEA and developed in collaboration with IIASA, elaborates the emission scenario at national and regional level.

9.1 THE NATIONAL FRAMEWORK

At national level, the Legislative Decree n. 155 of 2010 (D.Lgs. 2010), that implements the European Directive on air quality, 2008/50/EC (EC, 2008), and the Legislative Decree n. 81 of 2018 (D.Lgs. 2018), that implements the new European Directive on National Emission Ceilings, 2016/2284/EC (EC, 2016), provide that ISPRA develops the energy scenario and the scenario of national production activities while ENEA, based on these scenarios, calculates the emission projections using the methodology developed for these purposes at European level.


In this framework, ENEA has elaborated the new national baseline emission scenario using the GAINS-Italy model.

GAINS-Italy is part of the MINNI model, an Integrated Modelling System that links atmospheric science with the economics of emission abatement measures and policy analysis and consists of several interdependent and interconnected components: the national AMS (*Atmospheric Modeling System*, Mircea et al., 2014) and the national GAINS-Italy. They interact in a feedback system through ATMs (*Atmospheric Transfer Matrices*) and RAIL (*RAINS-Atmospheric Inventory link*).

The GAINS-Italy (fig. 1) model explores cost-effective multi-pollutant emission control strategies (Ciucci et al., 2016) that meet environmental objectives on air quality impacts (on human health and ecosystems) and greenhouse gases. The current legislation (CLE) scenario represents the 'baseline' and reflects all policies legally in force, both those affecting activity levels (such as energy and agriculture policies), as well as pollution control policies for the period 1990-2050.

The GAINS-Italy model elaborates emission scenarios for air pollutants and greenhouse gases on 5-year time intervals, starting from 1990 to 2050, and evaluates cost-effective multi-pollutant emission control strategies to reach environmental objectives on air quality impacts. Moreover, GAINS-Italy performs fast-response calculations of regional background concentrations of PM2.5 and NO₂ (at spatial resolution of 20 km) in consequence of hypothesized emission reductions on the Italian territory. This last feature is enhanced by the

Atmospheric Transfer Matrices (ATMs), simplified (quasi-linear) relations between total regional emissions and concentrations, calibrated through a set of national Atmospheric Modelling System simulations, based on controlled pollutant emission reductions (Briganti et al., 2011).

Figure 9.1 – The simplified functional flow-chart of the MINNI national modelling scheme.

The development of an emission scenario with the GAINS-Italy model requires the definition of anthropogenic activity levels, both energy and non-energy, and of a control strategy with a 5-year interval for the period 1990-2050 in the format required by the model. Starting from these information, GAINS-Italy produces alternative future emission and air quality scenarios and abatement costs at a 5-year interval starting from 1990 to 2050.

For the preparation of national emission scenarios, an acceptable harmonization, at a given base year, between the national emission inventory and the GAINS-Italy emissions (D'Elia and Peschi, 2013) has been carried out. More details about the procedure to build an emission scenario could be found in D'Elia and Peschi, 2016.

The GAINS-Italy model is accessible online at http://gains-it.bologna.enea.it/gains/IT/index.login (registration needed).

In the present chapter, the scenarios that will be discussed are the WM (With Measure), the WAM (With Additional Measure) scenarios elaborated for the National Air Pollution Control Programme (NAPCP, https://cdr.eionet.europa.eu/it/eu/nec_revised/programmes/envxioxug) and the Baseline scenario (BASE NECP) elaborated for the National and Climate Plan (NECP, Energy https://ec.europa.eu/energy/sites/ener/files/documents/it final necp main en.pdf).

9.2 INPUT SCENARIOS

9.2.1 The energy scenario

The energy scenarios were developed by ISPRA with the TIMES (The Integrated MARKAL-EFOM System) model generator. TIMES belongs to the family of MARKAL models and of the so-called 3e models (energy, economy, environment) whose methodology was developed within the Energy Technology Systems Analysis Program (ETSAP) of the International Energy Agency (IEA). TIMES combines two different but

complementary systematic approaches to energy modelling: an engineering technical approach and an economic approach. TIMES is a bottom-up model generator that uses linear programming to simulate an energy system in which costs are minimized, optimizing them based on a series of user constraints, over medium and long-term time horizons. ISPRA, through the use of this tool, has developed a modelling of the Italian energy system in order to explore its possible future evolutions. The simulated energy system consists of several sectors and sub-sectors (e.g. electricity generation, industrial activities, residential buildings, etc.), each consisting of a series of technologies linked by input-output linear relationships. Inputs and outputs can be energy carriers, materials, emissions, or service requests. As a bottom-up model, each technology is identified by a set of technical and economic parameters and the production of an asset or service depends on the actual demand from end users. In this way, the total consumption of energy carriers is the result of the sums of consumption needed to meet the individual final demands through the mix of processes chosen by the model through optimization, taking into account the constraints imposed. TIMES identifies the optimal solution to deliver energy services at the lowest cost, simultaneously producing investments in new technologies or using more intensively the available technologies. For example, an increase in demand of electricity for residential use can be met by more intensive use of available power plants or the installation of new power plants. The choice of model will be based on the analysis of the technological characteristics of the available alternatives, the energy supply economy and the constraints of the system such as environmental criteria or constraints. The model has been developed considering the detailed energy input needed by GAINS-Italy so that the two models are fully integrated and all the information needed by GAINS-Italy can be found in the TIMES output, that describes, for each sector, the amount of energy carriers, raw materials used, goods and services produced, vehicle fleets composition and mileage, etc.

The WM scenario is a scenario including only policies and measures that were in place until 2015 while the WAM is a scenario with policies and measures for the achievement of the objectives set by the National Energy Strategy (SEN) in terms of energy efficiency, greenhouse gas emissions and renewable sources.

Due to the different timing requirements, WM and WAM scenarios, used in the NACP and presented here, were produced before the National Energy and Climate Plan was released in January 2020, so they neither take into account the latest updates on the data, nor the new objectives established by the Plan.

The WM scenario was built on the basis of the work carried out by the Technical Table established on the initiative of the Presidency of the Council of Ministers in 2016. Since the European Commission developed a baseline scenario for the Union and for all Member States (EUref2016) through the PRIMES model in 2016, it was considered appropriate to implement the baseline scenario using the same assumptions, while characterizing the energy system according to national specific data. In particular, the parameters of the EUref2016 scenario adopted for Italy were: GDP growth and sector value added rates, population development, international prices of energy commodities (oil, gas, coal), the evolution of HDD (Heating Degree Day), net electricity imports and the price of carbon dioxide (CO2) shares in the ETS market. This scenario was also communicated to the European Environment Agency under the aforementioned Regulation (EU) No 525/2013 in April 2017 and is the main reference of Chapters 4 and 5 of the 7th National Communication on Climate Change sent by the Ministry of the Environment to UNFCCC in December 2017. A more detailed description can be found in the publication "Decarbonization of the Italian Economy" (published as RSE Colloquia IV volume 2017).

The WAM scenario was developed on the basis of SEN and allows to meet the targets for renewable sources, energy efficiency and greenhouse gas emissions by 2020, as well as a set of further milestones set by SEN to 2030, such as the decommissioning of coal-fired power plants by 2025, the achievement of a 55% quota of renewable sources in electricity generation, the spread of about 5 million electric cars, the strong penetration of methane in both road and ship freight, the reduction of greenhouse gas emissions in the non-ETS sector by 33% compared to 2005 levels. The WAM scenario, therefore, combines economic and demographic evolution,

the development of technologies and processes and consumption trends with the achievement of the objectives set by SEN. The policies that determine this are described in Chapter 8 of NACP.

The BASE_NECP energy scenario can be considered as an update of the WM scenario and it is consistent with the National Energy and Climate Plan (NECP) baseline scenario which includes historic data and policies and measures up to the end of 2016.

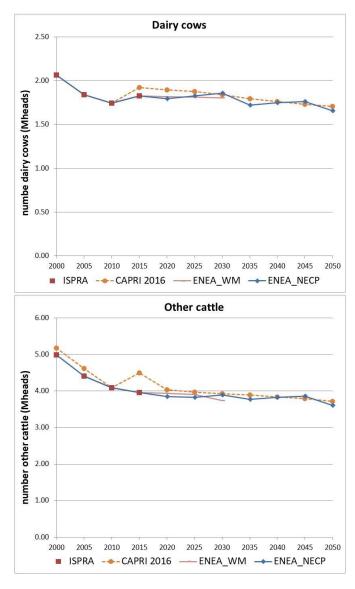
Later in 2020 new scenario are likely to be produced as a consequence of the activities carried out at national level on 2030 GHG targets as well as 2050 long term strategies which will are expected to have a major impact also in terms of pollutants emission reductions.

9.2.2 The scenario of non-energy activities

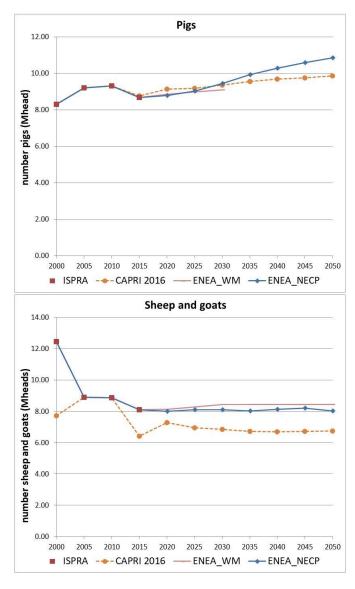
To develop an emission scenario, the GAINS-Italy model requires the definition also of non-energy activities level. The definition of such scenario is based on economic variables, like GDP (gross domestic product) or added value derived from the energy scenario, population data or specific sector statistics.

Livestock projection has been carried out with a statistical model where the number of animals has been linked to the projections of other variables, like meat consumption and production, or milk consumption and production (see equation 1)

$$(n^{\circ}heads_{i}) = \left(\frac{n^{\circ}heads_{i}}{MP_{i}}\right) \times \left(\frac{MP_{i}}{MC_{i}}\right) \times \left(\frac{MC_{i}}{MC_{tot}}\right) \times \left(\frac{MC_{tot}}{Pop}\right) \times (Pop)$$
(1)


where the head number of livestock i is linked to meat production (MP) and consumption (MC) of livestock i, total meat consumption (MC_{tot}) and population (Pop).

All the details about this methodology are provided in D'Elia and Peschi, 2013.


The updated livestock projections have been elaborated for the new baseline BASE_NECP: population data (*Pop*) are the same of the NECP energy scenario, while for meat production and consumption sectorial studies and statistics have been considered (http://www.ismeamercati.it/carni).

In the following figures, the results for the main livestock are reported where

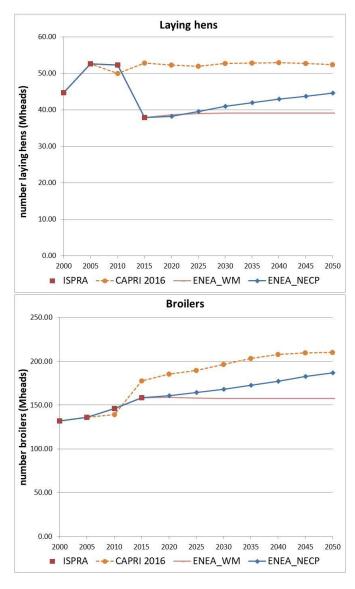

- ISPRA stands for the activity data considered in the 2019 emission submission, that was the last submission available when the livestock projections were elaborated;
- ENEA_WM are the projections considered in the WM and WAM scenarios whose descriptions are reported in previous IIR reports and in D'Elia and Peschi, 2016;
- ENEA NECP are the new projections elaborated for the BASE NECP scenario.

Figure 9.2 – *Livestock scenario comparison for dairy cows (on the left) and other cattle (on the right).*

Figure 9.3 – Livestock scenario comparison for pigs (on the left) and sheep and goats (on the right).

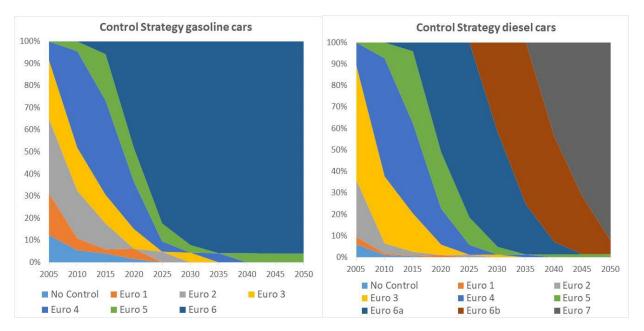


Figure 9.4 – Livestock scenario comparison for laying hens (on the left) and broilers (on the right).

9.2.3 The control strategy definition

In addition to energy, climate and agricultural policies assumed in the energy, non energy and agricultural input scenarios, in the baseline emission projections a detailed inventory of national emission control legislation is considered (Amann et al., 2011). In the baseline scenario it is assumed that all the European and national regulations will be fully complied according to the foreseen time schedule. Examples of the legislations considered are the Directive on Industrial Emissions for large combustion plants, the Directives on Euro standards, Solvent Directive, the Code of Agricultural Good Practice.

In the BASE_NECP an update of the control strategy for the road transport sector has been introduced and reported in the following figures while the hypotheses for WM and WAM scenarios are reported in previous IIR, in D'Elia and Peschi, 2016 and in the NAPCP.

Figure 9.5 – Control strategy for gasoline (on the left) and diesel (on the right) cars.

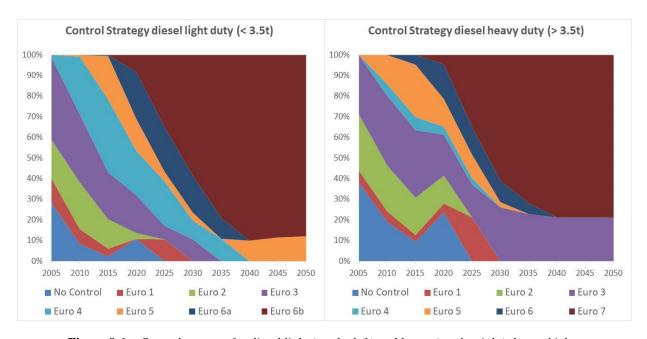


Figure 9.6 – Control strategy for diesel light (on the left) and heavy (on the right) duty vehicles.

9.3 THE HARMONIZATION PROCESS

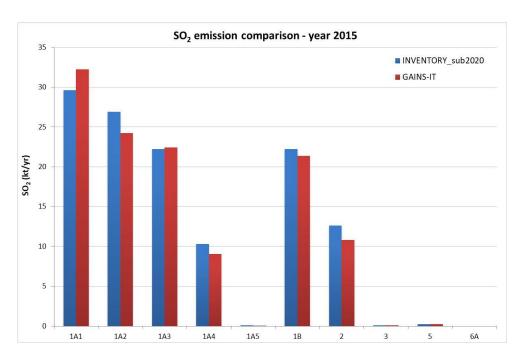
The first step for the preparation of a new national emission scenario is to align at a given base year the latest national emission inventory submission and the GAINS-Italy emissions, estimated with a top-down approach. Being a Party of the United Nations Economic Commission for Europe (UNECE) Convention on Long Range Transboundary Air Pollution (CLRTAP), Italy has to annually submit an emission inventory of air pollutants and provide a report on its data according to the Guidelines for reporting emissions and projections data (UNECE, 2015). On the other hand, to produce a reliable emission scenario, GAINS-Italy model produces its own emission estimates, for the years considered in the model, with its own classification system. Discrepancies between the inventory and the GAINS-Italy output exist and are due to different reasons, such as, for example, different coverage and aggregation of emission sources, different emission calculation methodologies. These discrepancies need so to be solved and the emission estimates to be aligned. This alignment step is called harmonization and is needed to validate the emission scenario to base emission time trends in GAINS-Italy on a reliable starting point. In the harmonization process, activity data, emission factors and technologies for each sector are compared. If discrepancies emerge (for example in fuel allocation across sectors or different assumptions on control measures in place in the year of comparison), the model parameters will be modified according to the inventory with the attempt to let GAINS-Italy reproduce emissions as closely as possible to the national emission inventory. Further details about the harmonization method are reported in D'Elia and Peschi, 2013. For all these reasons, a comparison between the last national emission inventory, both 2020 (https://www.ceip.at/ms/ceip home1/ceip home/status reporting/2020 submissions/) and 2019 (IIR, 2019), and the GAINS-Italy emission estimates has been carried out considering three historical years, 2005, 2010 and 2015. Results of the harmonization process between the 2020 emission inventory submission (INVENTORY sub2020) and GAINS-IT estimates are summarized in Table 9.1, while in paragraph 9.4 a comparison also with the 2019 emission inventory submission is reported.

Table 9.1 – Comparison of total emissions in the last submission of the national inventory report (INVENTORY_sub2020) and GAINS-Italy estimates (GAINS-IT), for the years 2005, 2010 and 2015.

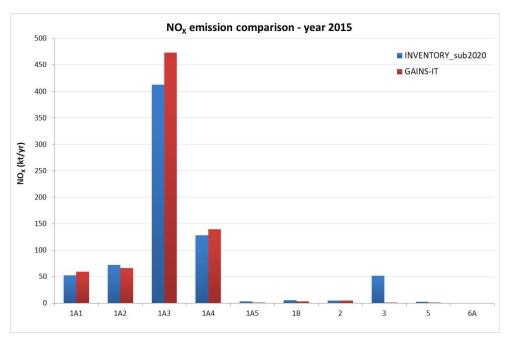
	Emissions 2005			Emissions 2010			Emissions 2015			
Pollutant	INVENTORY _sub2020 (kt)	GAINS-IT (kt)	(%)	INVENTORY _sub2020 (kt)	GAINS-IT (kt)	□ (%)	INVENTORY _sub2020 (kt)	GAINS-IT (kt)	□ (%)	
SO ₂	409	393	-3.88%	218	209	-4.25%	124	121	-3.10%	
NOx	1291	1231	-4.70%	945	985	4.23%	732	749	2.26%	
PM2.5	179	176	-1.60%	201	196	-2.51%	162	166	2.68%	
NMVOC	1361	1232	-9.47%	1137	993	-12.68%	917	806	-12.09%	
NH ₃	426	428	0.45%	387	391	0.91%	379	397	4.87%	

Discrepancies in reproducing the national emission inventory have been considered acceptable if differences remain within a few percentage points, i.e. in the interval between \pm 5%. The higher differences in NMVOC emissions for all the three years depend on the estimates of emissions from the agricultural sector (NFR code 3) that in the model estimates have not yet been considered but they will be introduced in the emission projection update that is underway.

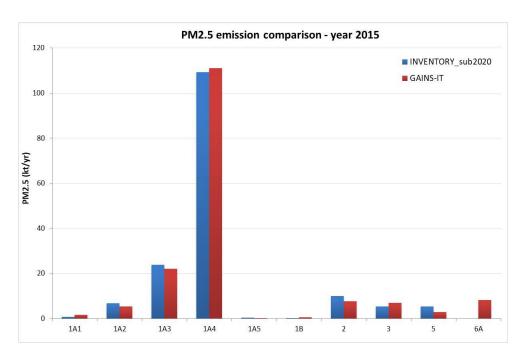
In the following plots, details on sectoral emissions by NFR code (Nomenclature For Reporting; Table 9.2 reports the sectors considered) are illustrated for the year 2015.

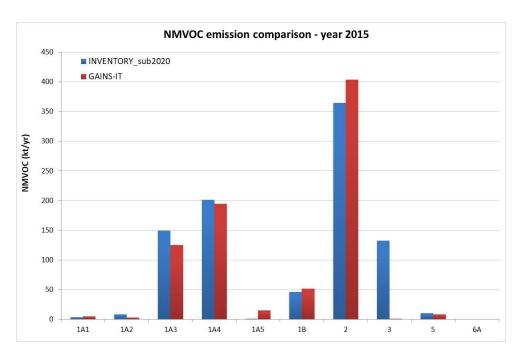

Table 9.2 – Definition of the NFR code used in the comparison between emission inventory and GAINS-IT estimates.

NFR code	Description
1A1	Energy industries (Combustion in power plants & Energy Production)
1A2	Manufacturing Industries and Construction (Combustion in industry including Mobile)
1A3b	Road and Off-road Transport
1A4	Other sectors (Commercial, institutional, residential, agriculture and fishing stationary and mobile combustion)
1A5	Other
1B	Fugitive emissions (Fugitive emissions from fuels)
2	Industrial Processes and Solvent use
3	Agriculture
5	Waste
6A	Other (included in National Total for Entire Territory)


For SO₂ emissions, the model shows a slight overestimate of the sector 1A1 and underestimate of the sectors 1A2, 1A4 and 2, while for NO_X there is a slight overestimate of the sector 1A3. Emissions from the agriculture sector (code 3) both for NO_X and NMVOC are missing in GAINS-IT and will be added in future updates.

PM2.5 shows a good agreement between the two estimates with the exception of the sector 6 – Other where the model estimates emissions from barbecue, fireworks not estimated in the inventory for their high uncertainties.


The model shows a slight overestimate in NMVOC emissions from the sector 2 – Industrial process and solvent use and in NH₃ emissions from the sector 3 – Agriculture in the range of uncertainty considered acceptable.


Figure 9.7 – SO_2 national emission harmonization between the last emission inventory (INVENTORY_sub2020) and GAINS-IT estimates detailed by NFR sectors for the year 2015.

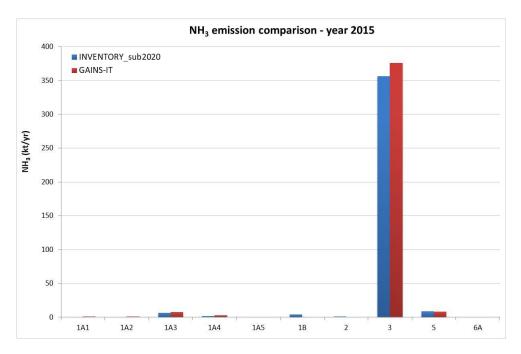
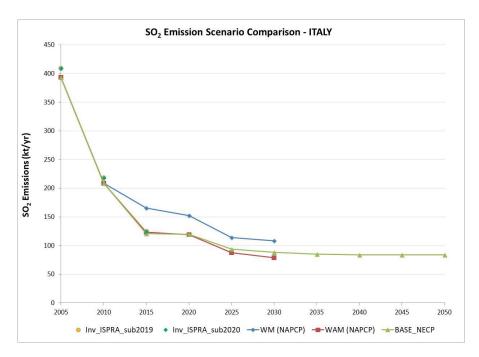
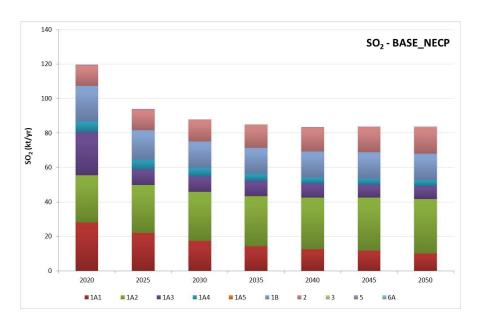

Figure 9.8 – NO_X national emission harmonization between the last emission inventory (INVENTORY_sub2020) and GAINS-IT estimates detailed by NFR sectors for the year 2015.

Figure 9.9 – PM2.5 national emission harmonization between the last emission inventory (INVENTORY_sub2020) and GAINS-IT estimates detailed by NFR sectors for the year 2015.

Figure 9.10 – NMVOC national emission harmonization between the last emission inventory (INVENTORY_sub2020) and GAINS-IT estimates detailed by NFR sectors for the year 2015.


Figure 9.11 – NH₃ national emission harmonization between the last emission inventory (INVENTORY_sub2020) and GAINS-IT estimates detailed by NFR sectors for the year 2015.

9.4 THE EMISSION SCENARIO


The result of the activity input scenarios and of the harmonization process is an emission scenario.

In the following figures, a comparison of both the 2019 and 2020 emission inventory submissions, the projections of the WM, WAM, both used for NAPCP for the years 2020, 2025 and 2030, and the BASE_NECP scenario, used for NECP till the year 2050, are presented. Details by NFR sector are presented for the BASE_NEC; the WM and WAM scenario descriptions have already discussed in the IIR, 2019 and in the NAPCP, respectively.

A huge decrease in SO_2 emissions is projected (fig. 9.12) driven by the energy and the maritime sector for the year 2020 and 2030 while the industrial sector (1A2) represents the main emitter (fig. 9.13).

Figure 9.12 – Reported and projected (WM, WAM, BASE_NECP) SO₂ emissions elaborated by the GAINS-Italy model.

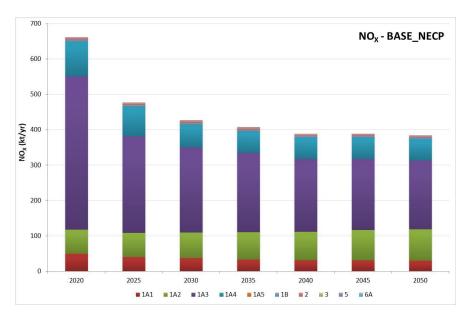


Figure 9.13 –SO₂ emissions by NFR sectors in the BASE_NECP scenario.

A huge decrease is estimated in NO_X emission scenarios (fig. 9.14) due to the diffusion of new diesel Euro 6 vehicles and of electric vehicles. The road transport sector still represents the principle NO_X source (fig. 9.15).

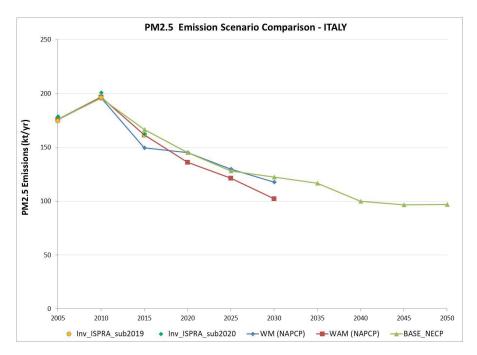


Figure 9.14 – Reported and projected (WM, WAM, BASE_NECP) NO_X emissions elaborated by the GAINS-Italy model.

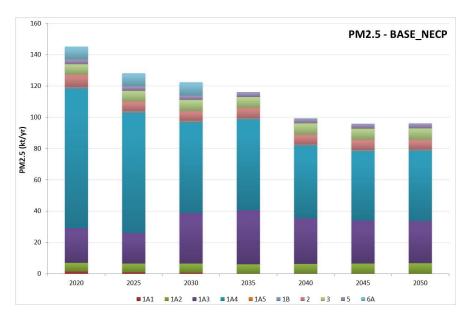


Figure 9.15 – NO_X emissions by NFR sectors in the BASE_NECP scenario.

The new baseline scenario, BASE_NECP, follows the previous baseline scenario, WM, (fig. 9.16) where the civil sector (1A4) continues to represent the main emitting sector for PM2.5 emissions (fig. 9.17).

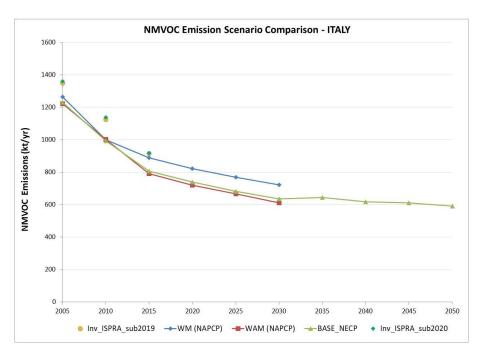


Figure 9.16 – Reported and projected (WM, WAM, BASE_NECP) PM2.5 emissions elaborated by the GAINS-Italy model.

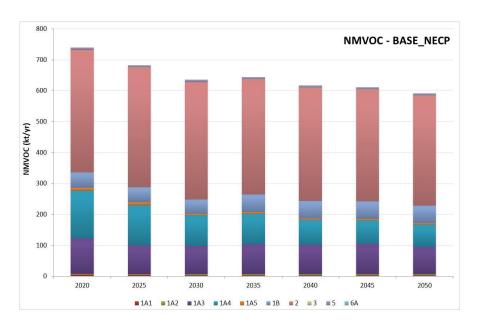


Figure 9.17 – PM2.5 emissions by NFR sectors in the BASE_NECP scenario.

The new BASE_NECP scenario shows lower values than the WM and is aligned to the WAM scenario (fig. 9.18), but the solvent sector still represents the main emitting sector (fig. 9.19).

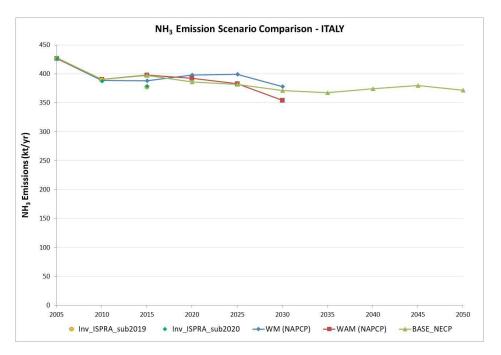


Figure 9.18 – Reported and projected (WM, WAM, BASE_NECP) NMVOC emissions elaborated by the GAINS-Italy model.

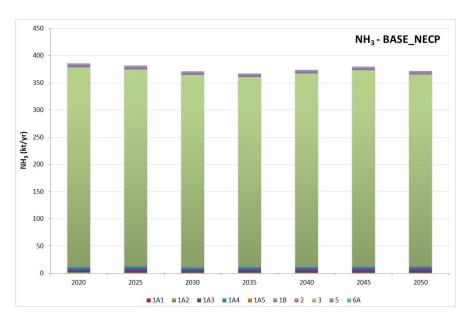


Figure 9.19 – NMVOC emissions by NFR sectors in the BASE_NECP scenario.

 NH_3 is the pollutant with less variations between the scenarios (fig. 9.20) whose main contribution to total NH_3 emissions is due by the agricultural sector (fig. 9.21).

Figure 9.20 – Reported and projected (WM, WAM, BASE_NECP) NH₃ emissions elaborated by the GAINS-Italy model.

Figure 9.21 – NH_3 emissions by NFR sectors in the BASE_NECP scenario.

9.5 THE NEC EMISSION TARGETS

The new NEC Directive (EC, 2016), implemented in the Italian legislation in the D.Lgs. 81/2018, defines for each Member States the emission reduction targets in the year 2020 and 2030 respect to the base year 2005 for the anthropogenic emissions of SO₂, NO_x, PM2.5, NMVOC and NH₃.

In Tables 9.3 and 9.4 the attainment of the national emission reductions in the years 2020 and 2030, respectively, in the comparison with the new National Emission Ceilings Directive (NECD) targets is reported.

Table 9.3 – National emission reductions in the year 2020 respect to the base year 2005 and comparison with the new National Emission Ceilings Directive (NECD) targets.

	2020 emissi	on reductions	s from 2005	
	NECD Target	2020_WM	2020_WAM	2020_BASE_NECP
SO_2	-35%	-61%	-70%	-70%
NO_X	-40%	-43%	-47%	-46%
PM2.5	-10%	-17%	-23%	-18%
NMVOC	-35%	-35%	-41%	-40%
NH ₃	-5%	-7%	-8%	-10%

Table 9.4 – National emission reductions in the year 2030 respect to the base year 2005 and comparison with the new National Emission Ceilings Directive (NECD) targets.

	2030 emissi	on reductions	s from 2005	
	NECD Target	2030_WM	2030_WAM	2030_BASE_NECP
SO_2	-71%	-73%	-80%	-78%
NO _X	-65%	-63%	-70%	-65%
PM2.5	-40%	-33%	-42%	-30%
NMVOC	-46%	-43%	-50%	-48%
NH ₃	-16%	-11%	-17%	-13%

According to the present emission projections, all the targets should be met in 2020 already in the WM and BASE_NECP scenario, while for the 2030 targets additional measures have been adopted in the WAM scenario to respect the NO_X, PM2.5, NMVOC and NH₃ targets. Also the new baseline scenario, BASE_NECP, shows that additional measures need to be adopted to attain the 2030 emission reduction targets. In future updates, a new WAM coming from measures and policies of the National Energy and Climate Plan will be elaborated.

10 REFERENCES

10.1 Introduction

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2009. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 9/2009.

EMEP/EEA, 2013. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 12/2013.

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 21/2016.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 13/2019.

EU, 2016. National Emissions Ceilings Directive 2016/2284/EU.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

ISPRA, 2009. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. Anni 1990-1995-2000-2005. ISPRA, 92/2009. URL: http://www.apat.gov.it/site/it-IT/APAT/Pubblicazioni/Rapporti/Documento/rapporti 92 2009.html.

ISPRA, 2014. Quality Assurance/Quality Control plan for the Italian Emission Inventory. Procedures Manual. Report 112/2014. http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni.

ISPRA, 2018. National Greenhouse Gas Inventory System in Italy. March 2018, http://www.sinanet.isprambiente.it/it/sinanet/serie-storiche-emissioni.

ISPRA, 2020[a]. Italian Greenhouse Gas Inventory 1990-2017. National Inventory Report 2019. March 2019, http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni.

ISPRA, 2020[b]. Quality Assurance/Quality Control plan for the Italian Emission Inventory. Year 2019. March 2019, http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni.

Romano D., Bernetti A., De Lauretis R., 2004. Different methodologies to quantify uncertainties of air emissions. Environment International vol 30 pp 1099-1107.

UNECE, 2008. Guidelines for Reporting Emission Data under the Convention on Long-range Transboundary Air Pollution, Emission Reporting Guidelines. ECE/EB.AIR/2008/4 23 September 2008.

UNECE, 2010. Report for the Stage 3 in-depth review of emission inventories submitted under the UNECE LRTAP Convention and EU National Emissions Ceilings Directive for Italy. CEIP/S3.RR/2010/ITALY (25/11/2010).

UNECE, 2013. Report for the Stage 3 in-depth review of emission inventories submitted under the UNECE LRTAP Convention and EU National Emissions Ceilings Directive for Italy. CEIP/S3.RR/2013/ITALY (20/08/2013)

UNECE, 2014. Guidelines for Reporting Emissions and Projections Data under the Convention on Long Range Transboundary Air Pollution, ECE/EB.AIR/125 13 March 2014.

10.2 ANALYSIS OF KEY TRENDS BY POLLUTANT

Decree of President of the Republic 24 May 1988, n. 203. Attuazione delle direttive CEE numeri 80/779, 82/884, 84/360 e 85/203 concernenti norme in materia di qualità dell'aria, relativamente a specifici agenti inquinanti, e di inquinamento prodotto dagli impianti industriali, ai sensi dell'art. 15 della L. 16 aprile 1987, n. 183 (2) (2/a). Gazzetta Ufficiale del 16 giugno 1988, n. 140, S.O.

EC, 1975. Council Directive 75/716/EEC of 24 November 1975 on the approximation of the laws of the Member States relating to the sulphur content of certain liquid fuels.

EC, 1988. Council Directive 88/609/EEC of 24 November 1988 on the limitation of emissions of certain pollutants into the air from large combustion plants.

EC, 1991. Council Directive 91/441/EEC of 26 June 1991 amending Directive 70/220/EEC on the approximation of the laws of the Member States relating to measures to be taken against air pollution by emissions from motor vehicles.

EC, 1994. Directive 94/12/EC of the European Parliament and the Council of 23 March 1994 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Directive 70/220/EEC.

EC, 1996. Council directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control. Official Journal L 257, 10/10/1996 P. 0026-0040.

EC, 1997 [a]. Directive 97/68/EC of the European Parliament and of the Council of 16 December 1997 on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery.

EC, 1997 [b]. Directive 97/24/EC of the European Parliament and of the Council of 17 June 1997 on certain components and characteristics of two or three-wheel motor vehicles.

EC, 1998. Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council Directive 70/220/EEC.

EC, 1999. Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations.

EC, 2001. National Emission Ceilings Directive: Directive 2001/81/EC.

EC, 2004. Council Directive 2004/26/EC of 21 April 2004 amending Directive 97/68/EC on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery.

EU, 2016. National Emissions Ceilings Directive 2016/2284/EU.

ISTAT, 2014. I consumi energetici delle famiglie, anno 2013. http://www.istat.it/it/archivio/142173

Ministerial Decree 8 May 1989. Limitazione delle emissioni in atmosfera di taluni inquinanti originati dai grandi impianti di combustione. Gazzetta Ufficiale Italiana n. 124 del 30/05/1989.

Ministerial Decree 12 July 1990. Linee Guida per il contenimento delle emissioni inquinanti degli impianti industriali e la fissazione dei valori minimi di emissione. G.U. 30 luglio 1990, n. 176.

Ministerial Decree 16 May 1996, n. 392. Regolamento recante norme tecniche relative alla eliminazione degli olii usati. G. U. n. 173 del 25/07/1996.

Ministerial Decree 21 January 2000, n. 107. Regolamento recante norme tecniche per l'adeguamento degli impianti di deposito di benzina ai fini del controllo delle emissioni dei vapori. G. U. 02/05/2000 n. 100.

MSE, several years [a]. Bilancio Energetico Nazionale (BEN). Ministero delle Attività Produttive, Direzione Generale delle Fonti di Energia ed industrie di base. http://dgerm.sviluppoeconomico.gov.it/dgerm/ben.asp.

10.3 ENERGY (NRF SECTOR 1)

ACI, several years. Annuario statistico. Automobile Club d'Italia, Roma. http://www.aci.it/index.php?id=54.

AEEG, several years. Qualità del servizio gas. Autorità per l'energia elettrica e il gas. http://www.autorita.energia.it/it/dati/elenco_dati.htm .

AISCAT, several years. Aiscat in cifre. Data and reports available on website at: http://www.aiscat.it/pubb cifre.htm?ck=1&sub=3&idl=4&nome=pubblicazioni&nome sub=aiscat%20in%20cifre.

ALTROCONSUMO, 2018. Characterization of residential biomass fired appliances emissions with "real-world" combustion cycles. Technical Report (rev.2). Laboratorio Energia e Ambiente Piacenza. Società Consortile partecipata dal Politecnico di Milano. Piacenza December, 3rd 2018.

ANCMA, several years. Data available on website at: http://www.ancma.it/statistiche-/-statistics.

ANPA, 2001. Redazione di inventari nazionali delle emissioni in atmosfera nei settori del trasporto aereo e marittimo e delle emissioni biogeniche. Rapporto finale. Gennaio 2001

ARPA, 2007 – Stima dei consumi di legna da ardere ed uso domestico in Italia. Ricerca commissionata da APAT e ARPA Lombardia, Rapporto finale, marzo 2007.

ASSOTERMICA, several years. Studio Statistico, http://www.anima.it/contenuti/10670/studi-di-mercato.

Berdowski J.J.M., Baas J., Bloos J.P.J., Visschedijk A.J.H., Zandveld P.Y.J., 1997. The European Emission Inventory of Heavy Metals and Persistent Organic Pollutants for 1990. TNO Institute of Environmental Sciences, Energy Research and Process Innovation, UBA-FB report 104 02 672/03.

CESI, 2005. Caratterizzazione delle emissioni di caldaie residenziali, CESI, 2005.

CONFETRA, several years. Il trasporto merci su strada in Italia. Data and reports available on website at: http://www.confetra.it/it/centrostudi/statistiche.htm.

Decree of President of the Republic 24 May 1988, n. 203. Attuazione delle direttive CEE numeri 80/779, 82/884, 84/360 e 85/203 concernenti norme in materia di qualità dell'aria, relativamente a specifici agenti inquinanti, e di inquinamento prodotto dagli impianti industriali, ai sensi dell'art. 15 della L. 16 aprile 1987, n. 183 (2) (2/a). Gazzetta Ufficiale del 16 giugno 1988, n. 140, S.O.

EC, 2004. Council Directive 2004/26/EC of 21 April 2004 amending Directive 97/68/EC on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery.

EDISON, several years. Rendiconto ambientale e della sicurezza.

EEA, 2019. Third phase of review of national air pollution inventory data pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Final Review Report, 22 November 2019.

EEA, several years, Monitoring CO₂ emissions from passenger cars and vans, EEA technical reports.

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2013. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 12/2013.

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 21/2016.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 13/2019.

EMISIA SA, 2019. COPERT 5 v 5.2.2, Computer programme to calculate emissions from road transport, February 2019. http://www.emisia.com/copert/.

ENAC/MIT, several years. Annuario Statistico. Ente Nazionale per l'Aviazione Civile, Ministero delle Infrastrutture e dei Trasporti.

ENEA, several years. Rapporto Energia Ambiente. Ente per le Nuove tecnologie, l'Energia e l'Ambiente, Roma.

ENEA, 2000. Il riciclaggio delle batterie al piombo-acido esauste.

ENEA-AIB-MATT, 2002. "Valutazione delle emissioni di inquinanti organici persistenti da parte dell'industria metallurgica secondaria".

ENEA-federAmbiente, 2012. Rapporto sul recupero energetico da rifiuti urbani in Italia. 3° ed.

ENI, several years. Health Safety Environment report. ENI.

EUROCONTROL, several years. EUROCONTROL Fuel and Emissions Inventory. Personal Communication to EU Member States. Last communication November 2017.

Gerardi V., Perrella G., 2001 - I consumi energetici di biomasse nel settore residenziale in Italia nel 1999. ENEA, Ente Nazionale per l'Energia e l'Ambiente, 2001, ENEA RT/ERG/2001/07.

Giordano R., 2007. Trasporto merci: criticità attuali e potenziali sviluppi nel contesto europeo. National road transporters central committee.

INNOVHUB, 2016. Studio comparativo sulle emissioni di apparecchi a gas, GPL, gasolio e pellet. INNOVHUB, Stazioni sperimentali per l'industria.

INNOVHUB, 2018. Fuel consumption, regulated and unregulated exhaust emission tests on five Euro 6 b/c bifuel LPG passenger cars.

INNOVHUB, several years. Report on the physico-chemical characterization of fossil fuels used in Italy.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

ISPRA, 2009. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. Anni 1990-1995-2000-2005. ISPRA, 92/2009. URL: http://www.apat.gov.it/site/it-IT/APAT/Pubblicazioni/Rapporti/Documento/rapporti_92_2009.html.

ISPRA, 2017. Annuario dei dati ambientali 2017. Report 76/2017. http://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente/annuario-dei-dati-ambientali-2017.

ISPRA, 2019[a]. Italian Greenhouse Gas Inventory 1990-2017. National Inventory Report 2019. March 2019, http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni.

ISPRA, 2019[b]. Quality Assurance/Quality Control plan for the Italian Emission Inventory. Year 2019. March 2019, http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni.

ISPRA, several years. Fuel Quality Monitoring Annual Report.

ISTAT, 2009. Personal communication.

ISTAT, 2014. I consumi energetici delle famiglie, 2013. Nota metodologica. Istituto Nazionale di Statistica www.istat.it.

ISTAT, several years [a]. Annuario Statistico Italiano. Istituto Nazionale di Statistica

ISTAT, several years [b]. Trasporto merci su strada. Istituto Nazionale di Statistica. http://www3.istat.it/dati/dataset/20110729 00/.

JRC, 2013. JRC reference report. Best Available Techniques (BAT) Reference Document for Iron and Steel Production. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). Report EUR 25521 EN.

Katsis P., Mellios G., Ntziachristos L., 2012. Description of new elements in COPERT 4 v 10.0, December 2012.

Kouridis C., Gkatzoflias D., Kioutsioukis I., Ntziachristos L., Pastorello C., Dilara P., 2010. Uncertainty Estimates and Guidance for Road Transport Emission Calculations, European Commission, Joint Research Centre, Institute for Environment and Sustainability, 2010, http://www.emisia.com/docs/COPERT%20uncertainty.pdf.

Ministerial Decree 12 July 1990. Linee Guida per il contenimento delle emissioni inquinanti degli impianti industriali e la fissazione dei valori minimi di emissione. G.U. 30 luglio 1990, n. 176.

MIT, several years. Conto Nazionale delle Infrastrutture e dei Trasporti (CNT). Ministero delle Infrastrutture e dei Trasporti. http://www.mit.gov.it/mit/site.php?o=vc&lm=2&id_cat=148.

MSE, several years [a]. Bilancio Energetico Nazionale (BEN). Ministero delle Attività Produttive, Direzione Generale delle Fonti di Energia ed industrie di base. http://dgerm.sviluppoeconomico.gov.it/dgerm/ben.asp.

MSE, several years [b]. Bollettino Petrolifero Trimestrale (BPT). Ministero dello sviluppo economico. http://dgerm.sviluppoeconomico.gov.it/dgerm/bollettino.asp.

Riva A., 1997. Methodology for methane emission inventory from SNAM transmission system. Snam Spa Italy.

Romano D., Gaudioso D., De Lauretis R., 1999. Aircraft Emissions: a comparison of methodologies based on different data availability. Environmental Monitoring and Assessment. Vol. 56 pp. 51-74.

SCENARI/ISPRA, 2013. Indagine sull'uso e la disponibilità delle biomasse in Italia. 2013.

Sempos I., 2018. Note on fossil carbon content in biofuels. IPCC Working Group I, 10 October 2018.

SNAM, several years. Bilancio di sostenibilità.

SSC, 2012. Final report on emissions from biomass combustion for heating. Stazione Sperimentale dei Combustibili. Prot. ENEA/2009/34883/APU-UGA March 2012.

TECHNE, 2009. Stima delle emissioni in atmosfera nel settore del trasporto aereo e marittimo. Final report. TECHNE Consulting, March 2009.

TERNA, several years. Dati statistici sugli impianti e la produzione di energia elettrica in Italia, Gestore Rete Trasmissione Nazionale. www.terna.it.

Trozzi C., Vaccaro R., De Lauretis R., Romano D., 2002 [a]. Air pollutant emissions estimate from global air traffic in airport and in cruise: methodology and case study. Presented at Transport and Air Pollution 2002.

Trozzi C., Vaccaro R., De Lauretis R., 2002 [b]. Air pollutant emissions estimate from global ship traffic in port and in cruise: methodology and case study. Presented at Transport and Air Pollution 2002.

UCINA, several years. La nautica in cifre. Analisi annuale del mercato. Unione Nazionale Cantieri Industrie Nautiche ed Affini.

UP, several years. Previsioni di domanda energetica e petrolifera in Italia. Unione Petrolifera.

10.4 IPPU - INDUSTRIAL PROCESSES (NRF SECTOR 2)

APAT, 2003. Il ciclo industriale dell'acciaio da forno elettrico. Agenzia per la Protezione dell'Ambiente e per i servizi tecnici, Rapporti 38/2003.

AITEC, 2017. Relazione annuale 2017. Associazione italiana tecnico economica del cemento. www.aitecweb.com.

CORINAIR, 1994. Default emission factors handbook. EUR 12586/2, Belgium.

EEA, 2017 [a]. Final Review Report. 2017 Comprehensive Technical Review of National Emission Inventories pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Italy 30 November 2017.

EEA, 2018. Second phase of review of national air pollution emission inventory data pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Final Review Report 2018, 30 November 2018.

EEA, 2019. Third phase of review of national air pollution inventory data pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Final Review Report, 22 November 2019.

EMEP/CORINAIR, 2006. Atmospheric Emission Inventory Guidebook. Technical report No 11/2006.

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2013. Air Pollutant Emission Inventory Guidebook. Technical report n. 12/2013.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 13/2019.

ENEA-AIB-MATT, 2002. "Valutazione delle emissioni di inquinanti organici persistenti da parte dell'industria metallurgica secondaria".

EUROCHLOR, 1998. Mercury process for making chlorine.

EUROCHLOR, 2001. Reduction of Mercury Emissions from the West European Chlor-Alkali Industry, June 2001 available on the web http://www.chem.unep.ch/mercury/2001-ngo-sub/eurochlor/sub1ngoatt8.pdf.

FEDERACCIAI, several years. La siderurgia in cifre. Federazione Imprese Siderurgiche Italiane.

ILVA, 1997. Personal communication.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook.

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan.

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

IPPC, 2001. Best Available Techniques Reference Document on the Production of Iron and Steel. Integrated Pollution Prevention and Control. European Commission. December 2001.

ISPRA, 2009. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. Anni 1990-1995-2000-2005. ISPRA, 92/2009. http://www.isprambiente.gov.it/it/pubblicazioni/rapporti/la-disaggregazione-a-livello-provinciale.

ISTAT, several years. Annuario Statistico Italiano. Istituto Nazionale di Statistica.

Legambiente, 2007. Lo stato dell'arte sulle riconversioni degli impianti cloro soda in Italia, Ottobre 2007 available on the web:

http://risorse.legambiente.it/docs/Lo_stato_dell_arte_sulle_riconversioni_degli_impianti_clorosoda_in_Italia_ott_2007.0000001526.pdf

MATTM, 2011. Autorizzazione integrata ambientale per l'esercizio dello stabilimento siderurgico della società ILVA s.p.a. ubicato nel comune di Taranto. IPPC permit.

MSE, several years. Statistiche produzione cementi. http://www.sviluppoeconomico.gov.it/index.php/it/per-i-media/statistiche/2009708-statistiche-produzione-cementi.

TNO, 1992. Emission factors manual PARCOM – ATMOS. Emission factors for air pollutants 1992.

10.5 IPPU - SOLVENT AND OTHER PRODUCT USE (NRF SECTOR 2)

ACI, several years. Annuario statistico. Automobile Club d'Italia, Roma. http://www.aci.it/index.php?id=54.

AIA, several years [a]. Personal Communication. Associazione Italiana Aerosol.

AIA, several years [b]. Relazioni annuali sulla produzione italiana aerosol. Associazione Italiana Aerosol.

Assocasa, several years. Personal Communication.

AVISA, several years. Personal Communication.

CEPE, 1999. European guidelines for car repairing.

EC, 1999. Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations.

EC, 2002. Screening study to identify reduction in VOC emissions due to the restrictions in the VOC content of products. Final Report of the European Commission, February 2002.

EC, 2004. Directive 2004/42/ce of the european parliament and of the council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC.

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 21/2016.

ENEA, 1997. Piano nazionale di tutela della qualità dell'aria. Technical report produced for the Italian Ministry of Environment in the framework of a national project on air quality issue.

ENEA/USLRMA, 1995. Lavanderie a secco.

FAO, several years. Food balance. http://faostat.fao.org.

Federchimica, several years. Personal Communication.

FIAT, several years. Rendiconto Ambientale. Gruppo Fiat.

GIADA, 2006. Progetto Giada and Personal Communication. ARPA Veneto – Provincia di Vicenza.

ISPRA, 2009. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. Anni 1990-1995-2000-2005. ISPRA, 92/2009. URL: http://www.apat.gov.it/site/it-IT/APAT/Pubblicazioni/Rapporti/Documento/rapporti_92_2009.html

ISTAT, several years [a]. Annuario Statistico Italiano.

ISTAT, several years [b]. Bollettino mensile di statistica.

ISTAT, several years [c]. Statistica annuale della produzione industriale. http://www.istat.it/it/archivio/73150

MICA, 1999. L'industria Italiana delle vernici. Ministero dell'Industria del Commercio e dell'Artigianato. Dicembre 1999.

Offredi P., several years. Professione Verniciatore del Legno. Personal communication.

Regione Campania, 2005. Inventario regionale delle emissioni di inquinanti dell'aria della Regione Campania, marzo 2005.

Regione Toscana, 2001. Inventario regionale delle sorgenti di emissione in aria ambiente, febbraio 2001.

Techne, 1998. Personal communication.

Techne, 2004. Progetto MeditAiraneo. Rassegna dei fattori di emissione nazionali ed internazionali relativamente al settore solventi. Rapporto Finale, novembre 2004.

Techne, 2008. Fattori di emissione per l'utilizzo di solventi. Rapporto Finale, marzo 2008.

UNIPRO, several years. Rapporto Annuale - Consumi cosmetici in Italia.

Vetrella G., 1994. Strategie ottimali per la riduzione delle emissioni di composti organici volatili. Thesis in Statistics.

10.6 AGRICULTURE (NRF SECTOR 3)

APAT, 2005. Methodologies used in Italy for the estimation of air emission in the agriculture sector. Technical report 64/2005. Rome - Italy. http://www.isprambiente.gov.it/it/pubblicazioni/rapporti

Bassanino M., Sacco D., Zavattaro L., Grignania C., 2011. Nutrient balance as a sustainability indicator of different agro-environments in Italy. Ecol Indic 11(2): 715-723

Bechini L., Castoldi N., 2009. On-farm monitoring of economic and environmental performances of cropping systems: Results of a 2-year study at the field scale in northern Italy. Ecol Indic 9: 1096–1113

Berdowski J.J.M., Baas J, Bloos JP.J., Visschedijk A.J.H., Zandveld P.Y.J., 1997. The European Atmospheric Emission Inventory for Heavy Metals and Persistent Organic Pollutants. Umweltforschungsplan des Bundesministers fur Umwelt, Naturschutz und Reaktorsicherheit Luftreinhaltung. Forschungbericht 104 02 672/03. TNO, Apeldoorn, The Netherlands

Bittman S. et al, 2014. Bittman, S., Dedina, M., Howard C.M., Oenema, O., Sutton, M.A., (eds), 2014. Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen, Centre for Ecology and Hydrology, Edinburgh, UK www.clrtap-tfrn.org

Bonazzi G., Crovetto M., Della Casa G., Schiavon S., Sirri F., 2005. Evaluation of Nitrogen and Phosphorus in Livestock manure: Southern Europe (Italy), presentato al Workshop: Nutrients in livestock manure, Bruxelles, 14 February 2005

Cóndor R.D., Di Cristofaro E., De Lauretis R., 2008. Agricoltura: inventario nazionale delle emissioni e disaggregazione provinciale. Istituto superiore per la protezione e la ricerca ambientale, ISPRA Rapporto tecnico 85/2008. Roma, Italia. http://www.isprambiente.gov.it/it/pubblicazioni/rapporti

Cóndor R.D., 2011. Agricoltura: emissioni nazionali in atmosfera dal 1990 al 2009. Istituto superiore per la protezione e la ricerca ambientale (ISPRA). Rapporto ISPRA 140/2011. Roma, Italia. http://www.isprambiente.gov.it/it/pubblicazioni/rapporti/agricoltura-emissioni-nazionali-in-atmosfera-dal

Cóndor R.D., Valli L., 2011. Emissioni nazionali di ammoniaca e scenari emissivi derivanti dalla fase di spandimento agronomico e all'uso dei fertilizzanti azotati in Italia. e-book edited by the Centro Ricerche

Produzioni Animali (CRPA). http://www.crpa.it/media/documents/crpa_www/Pubblicazi/E-book/Ammoniaca2011/EmissioniAmmoniaca.pdf

CRPA, 1997. Piani Regionali di Risanamento e tutela della qualità dell'aria. Quadro delle azioni degli enti locali per il settore zootecnico delle aree padane. Relazione di dettaglio sulla metodologia adottata per la quantificazione delle emissioni di ammoniaca. Febbraio 1997

CRPA, 2006[a]. Progetto MeditAIRaneo: settore Agricoltura. Relazione finale. Technical report on the framework of the MeditAIRaneo project for the Agriculture sector, Reggio Emilia - Italy

CRPA, 2006[b]. Predisposizione di scenari di emissione finalizzati alla progettazione di interventi per la riduzione delle emissioni nazionali di ammoniaca ed alla valutazione di misure e di progetti per la tutela della qualità dell'aria a livello regionale. Final report. Reggio Emilia - Italy

CRPA, 2010[a]. Personal communication - experts Laura Valli and Maria Teresa Pacchioli from the Research Centre on Animal Production (expert consultation on N excretion and national production systems). Reggio Emilia, Italy

CRPA, 2010[b]. Valutazione dell'entità delle emissioni ammoniacali derivanti dall'applicazione al suolo dei fertilizzanti, delle loro possibilità di riduzione e individuazione degli elementi per un monitoraggio statistico delle tecniche di applicazione utilizzate. Report. Reggio Emilia – Italy

CRPA, 2018. Studio per la valutazione degli effetti sulle emissioni delle trasformazioni in corso nel settore degli allevamenti. Report. Reggio Emilia – Italy

EC, 1986. Council Directive 86/278/EC. Council Directive 86/278/EC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities 4 July 1986

EC, 2003. Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques for Intensive Rearing of Poultry and Pigs. European Commission, July 2003.

EEA, 2016. Analysis of key trends and drivers in greenhouse gas emissions in the EU between 1990 and 2014. Technical paper, June 2016. http://www.eea.europa.eu/publications/analysis-of-key-trends-ghg/

EEA, 2017. 2017 Comprehensive Technical Review of National Emission Inventories pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Final Review Report, 30 November 2017.

EEA, 2018. Second phase of review of national air pollution emission inventory data pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Final Review Report 2018, 30 November 2018.

EEA, 2019. Third phase of review of national air pollution inventory data pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Final Review Report, 22 November 2019.

EMEP/CORINAIR, 2006. Atmospheric Emission Inventory Guidebook. Technical report No 11/2006

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. Technical report n. 21/2016

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. Technical report n. 13/2019

ENEA, 2003. Emissione di ammoniaca e di composti ad effetto serra dagli allevamenti di galline ovaiole. Fattori di emissione e tecniche di riduzione. RT/2003/65/PROT. Italy.

ENEA, 2006. Valutazione della possibilità di sostituzione dell'urea con altri fertilizzanti azotati. Final report. Rome, Italy

EPA, 1995. AP-42 Compilation of Air Emission Factors, 5th edition January 1995. https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factors

Giardini L., 1983. Agronomia Generale, Patron, Bologna

GU, Gazzetta Ufficiale della Repubblica Italiana, 2006. Criteri e norme tecniche generali per la disciplina regionale dell'utilizzazione agronomica degli effluenti di allevamento e di acque reflue di cui all'articolo 38 del decreto legislativo 11 maggio 1999 N. 152. G.U. n. 109 del 12/05/06 - Suppl. Ordinario n.120. Ministero delle Politiche Agricole e Forestali. Italy. http://www.gazzettaufficiale.it/

GU, Gazzetta Ufficiale della Repubblica Italiana, 2016. Criteri e norme tecniche generali per la disciplina regionale dell'utilizzazione agronomica degli effluenti di allevamento e delle acque reflue, nonché per la produzione e l'utilizzazione agronomica del digestato. G.U. n. 90 del 18/04/16 - Suppl. Ordinario n. 9. Ministero delle Politiche Agricole Alimentari e Forestali. Italy. http://www.gazzettaufficiale.it/

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories

IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan

ISPRA, 2009. La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. Anni 1990-1995-2000-2005. ISPRA, 92/2009. http://www.isprambiente.gov.it/it/pubblicazioni/rapporti

ISPRA, 2018. Database della disaggregazione a livello provinciale dell'Inventario nazionale delle emissioni:1990-1995-2000-2005-2010-2015. Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA. http://www.sinanet.isprambiente.it/it/sia-ispra/inventaria

ISPRA, several years [a]. Italian Greenhouse Gas Inventory - National Inventory Report http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni

ISPRA, several years [b]. Quality Assurance/Quality Control plan for the Italian Emission Inventory, http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni

ISPRA, several years [c]. Annuario dei dati ambientali. http://annuario.isprambiente.it/

ISPRA, several years [d]. Serie storiche delle emissioni nazionali di inquinanti atmosferici, Rete del Sistema Informativo Nazionale Ambientale - SINANET.

http://www.sinanet.isprambiente.it/it/sinanet/serie storiche emissioni

Jenkins B.M. (1996a). 'Atmospheric Pollutant Emission Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations'. Final report (3 Vols.). CARB Project A932-126, California Air Resources Board, Sacramento, California.

MATTM, several years [b]. Personal communication: E-mail request for sewage sludge applied to agricultural soils in Italy. Ministero dell'Ambiente e della Tutela del Territorio e del Mare, Roma –Italia

Nicholson F.A., Chambers B.J., Walker A.W., 2004. Ammonia emissions from broiler litter and laying hen manure management system, Biosystems Engineering (2004) 89 (2), 175-185

Perelli, M., 2007. Prezzi dei prodotti agricoli e fertilizzazione. Fertilizzanti Maggio 2007. Anno IX N3. 10-13pp

Regione Emilia-Romagna, Servizio sviluppo sistema agroalimentare, (2001) L. R. 28/98 – p.s.a. 2000 - n. Prog. 3 tab. D - Tecniche di riduzione delle emissioni in atmosfera originate dagli allevamenti zootecnici, a cura di CRPA, Settembre 2001

Regione Emilia Romagna, 2004 L. R. 28/98 – P.S.A. 2001 - N. PROG. 3 TAB. B3 - Bilancio dell'azoto nelle specie di interesse zootecnico, Relazione finale, a cura di C.R.P.A., September 2004, Reggio Emilia, Italy

Xiccato G., Schiavon S., Gallo L., Bailoni L., Bittante G., 2005. Nitrogen excretion in dairy cow, beef and veal cattle, pig, and rabbit farms in Northern Italy. Ital. J.Anim.Sci. Vol. 4 (Suppl.), 103-111.

10.7 WASTE (NRF SECTOR 5)

Aasestad, 2007. The Norwegian Emission Inventory 2007. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants.

AMA-Comune di Roma, 1996. Nuovo impianto per l'incenerimento dei rifiuti ospedalieri. Rapporto AMA.

ANPA, 1998. Il sistema ANPA di contabilità dei rifiuti, prime elaborazioni dei dati. Agenzia Nazionale per la Protezione dell'Ambiente.

APAT-ONR, several years. Rapporto Rifiuti. Agenzia per la Protezione dell'Ambiente e per i servizi Tecnici.

AUSITRA-Assoambiente, 1995. Impianti di trattamento dei rifiuti solidi urbani e assimilabili. Indagine a cura di Merzagora W., Ferrari S.P.

Borgioli E., 1981. Nutrizione e alimentazione degli animali domestici. Ed Agricole, p. 464.

CESTAAT, 1988. Impieghi dei sottoprodotti agricoli ed agroindustriali, Vol. 1. Centro Studi sull'Agricoltura, l'Ambiente e il Territorio, edizione fuori commercio, p. 311.

CREA, 2017. Fornitura dati meteo-climatici georeferenziati nell'ambito della collaborazione CREA-AA/ISPRA. CREA - Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria Centro di ricerca Agricoltura e Ambiente (CREA-AA), delivery data mail 19/10/2017.

CRPA, 2018. Studio per la valutazione degli effetti sulle emissioni delle trasformazioni in corso nel settore degli allevamenti. Report. Reggio Emilia – Italy

De Stefanis P., 1999. Personal communication.

De Stefanis P., 2012. Personal communication (mail 16 November 2012)

EC, 1999. Council Directive 1999/31/EC. Council Directive 99/31/EC of 26 April 1999 on the landfill of waste. Official Journal of the European Communities 16 July 1999.

EEA, 2017 [a]. Final Review Report. 2017 Comprehensive Technical Review of National Emission Inventories pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Italy 30 November 2017.

EEA, 2017 [b]. Final Review Report. 2017 annual review of national greenhouse gas inventory data pursuant to Article 19(2) of Regulation (EU) No 525/2013. Italy 30 June 2017.

EEA, 2018. Second phase of review of national air pollution emission inventory data pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284). Final Review Report 2018, 30 November 2018.

EEA, 2019. Third phase of review of national air pollution inventory data pursuant to the Directive on the Reduction of National Emissions of Certain Atmospheric Pollutants (Directive (EU) 2016/2284 or 'NECD') Italy. Draft Review Report 2019, 18 october 2019.

EMEP/CORINAIR, 2007. Atmospheric Emission Inventory Guidebook. Technical report No 16/2007.

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. Technical report n. 21/2016.

EMEP/EEA, 2019. Air Pollutant Emission Inventory Guidebook. Technical report n. 13/2019.

ENEA-federAmbiente, 2012. Rapporto sul recupero energetico da rifiuti urbani in Italia. 3° ed.

Favoino E., Cortellini L., 2001. Composting and biological treatment in southern European countries: an overview. Conference Proceedings Soil and Biowaste in Southern Europe. Rome 18-19 January, 2001.

Favoino E., Girò F., 2001. An assessment of effective, optimised schemes for source separation of organic waste in Mediterranean districts. Conference Proceedings Soil and Biowaste in Southern Europe. Rome 18-19 January, 2001.

FEDERAMBIENTE, 1998. Impianti di smaltimento: analisi sui termocombustori RSU – prima edizione. Indagine a cura di Motawi A.

Finn L., Spencer R., 1997. Managing biofilters for consistent odor and VOC treatment. Biocycle, January 1997 Vol. 38 Iss. 1.

Gaudioso et al., 1993. Emissioni in atmosfera dalle discariche di rifiuti in Italia. RS, Rifiuti Solidi vol. VII n. 5, Sept.-Oct. 1993.

IIASA, 2004. Interim Report IR-04-079. Primary Emissions of Submicron and Carbonaceous Particles in Europe and the Potential for their Control.

IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference Manual, Reporting Manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA. IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Centre, Meteorological Office, Bracknell, UK.

IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan.

ISPRA, 2019[a]. Italian Greenhouse Gas Inventory 1990-2017. National Inventory Report 2019. March 2019, http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni.

ISPRA, several years [a]. Rapporto Rifiuti. Istituto Superiore per la Protezione e la Ricerca Ambientale. http://www.isprambiente.gov.it/it/pubblicazioni/rapporti

ISTAT, several years [a]. Statistiche dell'agricoltura, zootecnia e mezzi di produzione - Annuari (1990-1993), Istituto Nazionale di Statistica.

ISTAT, several years [b]. Statistiche dell'agricoltura - Annuari (1994-2000), Istituto Nazionale di Statistica.

ISTAT, 2015. Censimento delle acque per uso civile. Istituto nazionale di statistica, also available at website http://www.istat.it.

ISTAT, 2017[a]. Dati congiunturali sulle coltivazioni 2014. Istituto Nazionale di Statistica. http://agri.istat.it/jsp/Introduzione.jsp.

ISTAT, 2017[b]. Personal communication with R. Moro: E-mail request for last updated information on agricultural surface and production, year 2015. Istituto Nazionale di Statistica.

MATTM, several years [a]. RSA - Rapporto sullo stato dell'ambiente 1989, 1992, 1997, 2001. Ministero dell'Ambiente e della Tutela del Territorio e del Mare.

Ministerial Decree 19 November 1997, n. 503. Regolamento recante norme per l'attuazione delle Direttive 89/369/CEE e 89/429/CEE concernenti la prevenzione dell'inquinamento atmosferico provocato dagli impianti di incenerimento dei rifiuti urbani e la disciplina delle emissioni e delle condizioni di combustione degli impianti di incenerimento di rifiuti urbani, di rifiuti speciali non pericolosi, nonché di taluni rifiuti sanitari. G.U. 29 gennaio 1998, n. 23.

Ministerial Decree 12 July 1990. Linee Guida per il contenimento delle emissioni inquinanti degli impianti industriali e la fissazione dei valori minimi di emissione. G.U. 30 luglio 1990, n. 176.

Pastorelli et al., 2001. Sviluppo di fattori di emissione da inceneritori di rifiuti urbani lombardi e loro applicazione all'inventario nazionale delle diossine. Ingegneria Ambientale, ANNO XXX N.1 January 2001.

SEFIT, several years. Personal Communication with Daniele Fogli: E-mail request for activity data regarding cremation of corpses in Italy.

SEFIT, 2015. Emissioni inquinanti in atmosfera per i crematori italiani. Indagine conoscitiva ed elaborazione dati. Novembre 2015.

Tchobanoglous G. et al., 1993. Tchobanoglous G., Theisen H., Vigil A. Integrated Waste Management, McGraw-Hill, 1993.

US EPA, 1990. Air Emissions Species Manual, vol. I: Volatile Organic Compound Species Profiles, Second Edition. EPA-450/2-90-001a (United States Environmental Protection Agency – Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711), January 1990.

VV.FF., several years. Annually statistics of fire service in Italy, several years.

10.8 RECALCULATIONS AND IMPROVEMENTS

EMEP/EEA, 2016. Air Pollutant Emission Inventory Guidebook. EEA. Technical report No 21/2016.

EMISIA SA, 2017. COPERT 5 v 5.2.2, Computer programme to calculate emissions from road transport, December 2017. http://www.emisia.com/copert/.

ISPRA, 2019[b]. Quality Assurance/Quality Control plan for the Italian Emission Inventory. Year 2019. March 2019, http://www.sinanet.isprambiente.it/it/sinanet/serie_storiche_emissioni.

ISTAT, 2014. I consumi energetici delle famiglie, 2013. Nota metodologica. Istituto Nazionale di Statistica. http://www.istat.it.

10.9 PROJECTIONS

Amann, M., Bertok, J., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., Winiwarter, W., 2011. Cost-effective control of air quality and greenhouse gases in Europe: modelling and policy applications. Environmental Modeling Software, 26, 1489–1501.

Briganti, G., Calori, G., Cappelletti, A., Ciancarella, L., D'Isidoro, M., Finardi, S., Vitali, L., 2011. Determination of multi-year atmospheric transfer Matrices for GAINS-Italy model. In: High Performance Computing on CRESCO Infrastructure: Research Activities and Results, vol. 2010. pp. 45–51 Report ENEA Cresco, ISBN 978-88-8286-268-8.

Capros P. et al., 2016. EU Reference Scenario 2016 - Energy, transport and GHG emissions - Trends to 2050. European Union, 2016. https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf.

Ciucci, A., D'Elia, I., Wagner, F., Sander, R., Ciancarella, L., Zanini, G., Schöpp, W., 2016. Cost-effective reductions of PM2.5 concentrations and exposure in Italy. Atmospheric Environment, 140, 84-93.

COM, 2013. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS. A Clean Air Programme for Europe. Brussels, 18.12.2013, COM(2013) 918 final. http://ec.europa.eu/environment/air/clean_air_policy.htm

D'Elia, I., Bencardino, M., Ciancarella, L., Contaldi, M., Vialetto, G., 2009. Technical and Non-technical measures for air pollution emission reduction: The integrated assessment of the Regional Air Quality Management Plans through the Italian national model. Atmospheric Environment, 43, 6182-6189.

D'Elia, I., Peschi, E., 2013. Lo scenario emissivo nazionale nella negoziazione internazionale. ENEA Technical Report, RT/2013/10/ENEA (in Italian). http://openarchive.enea.it//handle/10840/4505.

D'Elia, I., Peschi, E., 2016. How National integrated air quality models can be used in defining environmental policies: the revision of the NEC directive. ENEA Technical Report, RT/2016/30/ENEA. http://openarchive.enea.it/handle/10840/8153.

D'Elia, I., Piersanti, A., Briganti, G., Cappelletti, A., Ciancarella, L., Peschi, E., 2018. Evaluation of mitigation measures for air quality in Italy in 2020 and 2030. Atmospheric Pollution Research, 9, 977-988.

D.Lgs., 2010. Decreto Legislativo 13 agosto 2010, n. 155. Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa (GU n.216 del 15-9-2010 - Suppl. Ordinario n. 217).

D.Lgs., 2018. Decreto Legislativo 30 maggio 2018, n. 81. Attuazione della direttiva (UE) 2016/2284 del Parlamento europeo e del Consiglio, del 14 dicembre 2016, concernente la riduzione delle emissioni nazionali di determinati inquinanti atmosferici, che modifica la direttiva 2003/35/CE e abroga la direttiva 2001/81/CE (GU n. 151 del 2-7-2018).

EC, 2008. Directive 2008/50/EC of the European parliament and of the council of 21 may 2008 on ambient air quality and a cleaner air for Europe. Official Journal of the European Union L. 152 of 11.06.2008.

EC, 2016. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. Official Journal of the European Union L. 344/1 of 17.12.2016.

IIR, 2019. Italian Emission Inventory 1990-2017. Informative Inventory Report 2019. ISPRA Technical Report 306/2019. ISBN 978-88-448-0952-2

Mircea, M., Ciancarella, L., Briganti, G., Calori, G., Cappelletti, A., Cionni, I., Costa, M., Cremona, G., D'Isidoro, M., Finardi, S., Pace, G., Piersanti, A., Righini, G., Silibello, C., Vitali, L., Zanini, G., 2014. Assessment of the AMS-MINNI system capabilities to predict air quality over Italy for the calendar year 2005. Atmospheric Environment, 84, 178–188, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2013.11.006

Mircea, M., Grigoras, G., D'Isidoro, M., Righini, G., Adani, M., Briganti, G., Ciancarella, L., Cappelletti, A., Calori, G., Cionni, I., Finardi, S., Larsen, B.R., Pace, G., Perrino, C., Piersanti, A., Silibello, C., Zanini, G., 2016. Impact of grid resolution on aerosol predictions: a case study over italy. Aerosol and Air Quality Research, 16,1253–1267, https://doi.org/10.4209/aaqr.2015.02.0058

Mircea, M., Bessagnet, B., D'Isidoro, M., Pirovano, G., Aksoyoglu, S., Ciarelli, G., Tsyro, S., Manders, A., Bieser, J., Stern, R., Vivanco, M.G., Cuvelier, C., Aas, W., Prévôt, A.S.H., Aulinger, A., Briganti, G., Calori, G., Cappelletti, A., Colette, A., Couvidat, F., Fagerli, H., Finardi, S., Kranenburg, R., Rouïl, L., Silibello, C., Spindler, G., Poulain, L., Herrmann, H., Jimenez, J.L., Day, D.A., Tiitta, P., Carbone, S., 2019. EURODELTA III exercise: An evaluation of air quality models' capacity to reproduce the carbonaceous aerosol. Atmospheric Environment: X, 2, 100018, ISSN 2590-1621, https://doi.org/10.1016/j.aeaoa.2019.100018

SEN, 2017. Strategia Energetica Nazionale, 10 novembre 2017.

http://www.sviluppoeconomico.gov.it/images/stories/documenti/testo_della_StrategiaEnergeticaNazionale_2017.pdf

UNECE, 2015. Guidelines for reporting emissions and projections data under the Convention on Long-range Transboundary Air Pollution. ECE/EB.AIR/128/2015.

https://www.unece.org/fileadmin/DAM/env/documents/2015/AIR/EB/English.pdf

APPENDIX 1 ADDITIONAL INFORMATION ON PROJECTION

A1.1 ENERGY SCENARIO (TOTAL VALUES)

Legend of GAINS sectors and activities

ACTIVI	TIES	Fuel consumption	
Abbrevia	tion	Description	Units
BC1		Brown coal/lignite, grade 1	PJ
BC2		Brown coal/lignite, grade 2 (includes peat)	PJ
DC		Derived coal (coke, briquettes)	PJ
ELE		Electricity	PJ
GAS		Natural gas (incl. CNG and derived gases)	PJ
GSL		Gasoline and other light fractions of oil; includes biofuels	PJ
H2		Hydrogen	PJ
HC1		Hard coal, grade 1	PJ
HC2		Hard coal, grade 2	PJ
НС3		Hard coal, grade 3	PJ
HF		Heavy fuel oil	РJ
HT		Heat (steam, hot water)	РJ
HYD		Hydro	PJ
LPG		Liquefied petroleum gas	PJ
MD		Medium distillates (diesel, light fuel oil; includes biofuels)	РJ
NUC		Nuclear	РJ
OS1		Biomass fuels	РJ
	ARD	Agricultural residuals - direct use	PJ
	BGS	Bagasse	PJ
	BIO	Biogas	PJ
	BMG	Biomass gasification	PJ
	CHCOA	Charcoal	PJ
	DNG	Dung	PJ
	FWD	Fuelwood direct	PJ
OS2		Other biomass and waste fuels	PJ
	BLIQ	Black liquor	PJ
	WSFR	Waste fuel, renewable	PJ
	WSFNR	Waste fuels, non-renewable	PJ
REN		Renewable energy other than biomass	PJ
	GTH	Geothermal	PJ
	SHP	Small hydro power	PJ
	SPV	Solar photovoltaic	PJ
	STH	Solar thermal	PJ
	WND	Wind	PJ

Fnerov		
Energy Abbreviation	Description	Units
Energy industries	Description	Omis .
PP	Power plants (public power and district heat plants, industrial CHP plants)	
PP_EX_OTH	Power & district heat plants existing, non-coal; for GAS - boilers	РЈ
PP EX S	Power & district heat plants, existing; coal/lignite fired, small units (< 50 MW th)	PJ
PP_EX_L	Power & district heat plants, existing, coarlighter fired, small diffes (>50 MW th)	PJ
		PJ
PP_NEW_L	Power & district heat plants new, non-coal; for GAS - turbines Power & district heat plants, new; coal/lignite fired, large units (> 50 MW th)	PJ
PP_MOD	Modern power plants (coal: ultra- and supercritical; gas: CCGT)	PJ
PP_MOD_CCS	Modern power plants (coal: ultra- and supercritical; gas: CCGT) with carbon capture and storage	PJ
PP_IGCC	Power & district heat plants: Integrated Gasification Combined Cycle	PJ
PP_IGCC_CCS	Power & district heat plants: Integrated Gasification Combined Cycle with carbon capture and storage	PJ
PP_ENG	Power & district heat plants with internal combustion engines	PJ
PP_TOTAL	Power & district heat plants (total); used for reporting total fossil fuels inputs, inputs of non-fossil fuels as well as total electricity and heat generation	РЈ
	existing plant - commissioned in or before 1995	
CON	Fuel production and conversion (transformation) other than in power plants	
CON_COMB	Fuel production & conversion: combustion (other than in boilers)	PJ
CON_LOSS	Own use of energy sector and losses during production, transmission & distribution of final product	PJ
Manufacturing Indus		
IN IN BO	Industrial combustion Industry: combustion in boilers (heat only boilers, all sectors)	PJ
IN_BO IN_OCTOT	Industry: combustion in boners (near only boners, an sectors) Industry: other combustion (all sectors)	PJ
IN_BO_CON	Industry, transformation sector, combustion in boilers	PJ
IN OC ISTE	Industry: iron and steel (other combustion)	PJ
IN_BO_CHEM	Industry: chemical industry (combustion in boilers)	PJ
IN_OC_CHEM	Industry: chemical industry (other combustion)	PJ
IN_OC_NFME	Industry: non-ferrous metals (other combustion)	РЈ
IN_OC_NMMI	Industry: non-metallic minerals (other combustion)	PJ
IN_BO_PAP	Industry: paper and pulp production (combustion in boilers)	PJ
IN_OC_PAP	Industry: paper and pulp production (other combustion)	PJ
IN_BO_OTH_L	Industry: other sectors; combustion of brown coal/lignite and hard coal in large boilers (>50 MWth)	PJ
IN_BO_OTH_S	Industry: other sectors; combustion of brown coal/lignite and hard coal in small boilers (< 50 MWth)	PJ
IN_BO_OTH	Industry: other sectors; combustion of fossil fuels other than brown coal/lignite and hard coal	PJ
IN_OC_OTH	Industry: other sectors (other combustion)	PJ
IN_OC	Industry: other combustion (all sectors) except fuel consumption in mineral products	PJ
	industry (used only for emissions calculations)	
NONEN	Nonenergy use of fuels	PJ
Domestic sector		
DOM	Residential, commercial, services, agriculture, etc.	PJ
DOM_RES	redidential sector	PJ
DOM_COM	commercial sector	PJ
DOM_OTH	other domestic (agriculture, forestry, fishing, other)	PJ
	, , , , , , , , , , , , , , , , , , ,	
Mobile		
Abbreviation	Description	Units
TRA_RD	Road vehicles	PJ
TRA_RD_HD	Heavy duty trucks and buses	PJ, Gvehkm, thousand vehicles
TRA_RD_HDB	Heavy duty vehicles - buses	PJ, Gvehkm, thousand vehicles
TRA_RD_HDT	Heavy duty vehicles - trucks	PJ, Gvehkm, thousand vehicles
TRA_RD_LD2	Motorcycles, mopeds and cars with 2-stroke engines	PJ, Gvehkm, thousand vehicles
TRA_RD_LD4	Light duty vehicles with 4-stroke engines	PJ, Gvehkm, thousand vehicles
TRA_RD_LD4C	Light duty vehicles: cars and small buses with 4-stroke engines	PJ, Gvehkm, thousand vehicles
TRA_RD_LD4T	Light duty vehicles: light commercial trucks with 4-stroke engines	PJ, Gvehkm, thousand vehicles
TRA_RD_M4	Motorcycles with 4-stroke engines	PJ, Gvehkm, thousand vehicles
TRA_OT	Other transport, non-road	PJ
TRA_OTS	Other transport; maritime activities	PJ, thousand vehicles (or engines)
TRA_OTS_L	Other transport: maritime, large vessels, >1000 GRT	PJ, thousand vehicles (or engines)
TRA_OTS_M	Other transport: maritime, medium vessels <1000GRT	PJ, thousand vehicles (or engines)
TRA_OT_AGR	Other transport: agriculture and forestry	PJ, thousand vehicles (or engines)
TRA_OT_AIR	Other transport: air traffic (total civil aviation - national and international, as reported in energy balances)	PJ
TRA_OT_CNS	Other transport: mobile sources in construction and industry	PJ, thousand vehicles (or engines)
TRA_OT_INW	Other transport: inland waterways	PJ, thousand vehicles (or engines)
TRA_OT_LB	Other transport: other off-road; sources with 4-stroke engines (military, households, etc., for GAS also pipeline compressors)	PJ, thousand vehicles (or engines)
TRA_OT_LD2	Other transport: off-road; sources with 2-stroke engines	PJ, thousand vehicles (or engines)
TRA_OT_RAI	Other transport: rail	PJ, thousand vehicles (or engines)

WM scenario (UM: PJ)

year	Act_abb	CON_COMB	CON_LOSS	IN_BO	IN_OCTOT	DOM	TRA_RD	TRA_OT	TRA_OTS	PP_TOTAL	NONEN	SUM
	2020 BC1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 BC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 HC1	0.0	3.2	0.1	26.9	0.0	0.0	0.0	0.0	407.9	3.2	441.3
	2020 HC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 HC3	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
	2020 DC	0.0		0.0	58.6	0.0		0.0	0.0	0.0	0.0	58.6
	2020 OS1	0.0	0.0	6.0	0.0	303.6		0.0	0.0	77.9	0.0	387.5
	2020 OS2	0.0	0.0	0.0	2.8	0.0		0.0	0.0	94.8	0.0	97.6
	2020 HF	87.4	0.0	30.2	73.8	0.0		0.0	32.8	38.8	2.8	265.9
	2020 MD	0.0	0.0	0.0	39.5	41.1	1023.4	103.2	40.8	18.8	0.0	1266.8
	2020 GSL	0.0	0.0	0.0	0.0	0.0		174.9	0.0	0.0	8.9	513.9
	2020 LPG	11.2		3.8	0.0	54.6		0.0	0.0	0.0	0.0	166.7
	2020 GAS	5.9		180.2	217.9	1052.8		0.0	0.0	992.3	425.2	2925.6
	2020 H2	0.0		0.0	0.0	0.0		0.0		0.0	0.0	0.0
	2020 REN	0.0	0.0	0.0	0.0	16.4		0.0	0.0	188.2	0.0	204.7
	2020 HYD	0.0		0.0	0.0	0.0		0.0	0.0	225.5	0.0	225.5
	2020 NUC 2020 ELE	0.0	0.0	0.0	0.0	0.0 2577.2		0.0	0.0	0.0 -153.0	0.0	0.0
	2020 ELE 2020 HT	0.0		0.0	415.4 118.3	2577.2 37.4		22.5 0.0	0.0	-153.0	0.0	2907.5 308.4
	2020 FII	104.6	201.1	220.3	953.2	4083.1	1502.0	300.5	73.7	1891.2	440.1	9769.7
	2025 BC1	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
	2025 BC2	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
	2025 BC2 2025 HC1	0.0		0.0	28.3	0.0	*	0.0	0.0	342.7	3.2	377.4
	2025 HC2	0.0			0.0	0.0		0.0	0.0	0.0	0.0	0.0
	2025 HC3	0.0				0.0		0.0	0.0	0.0	0.0	0.0
	2025 DC	0.0				0.0		0.0	0.0	0.0	0.0	56.0
	2025 OS1	0.0			_	310.0		0.0	0.0	77.6		394.1
	2025 OS2	0.0	0.0			0.0		0.0	0.0	101.9		105.2
	2025 HF	40.7	0.0	16.1	80.7	0.0		0.0	33.6	0.0	3.3	174.5
	2025 MD	0.0			38.2	38.2		103.1	41.5	2.0	0.0	1154.2
	2025 GSL	0.0	0.0	0.0	0.0	0.0		182.6	0.0	0.0	9.8	539.8
	2025 LPG	38.5	0.0	14.8	0.0	60.6	87.0	0.0	0.0	0.0	0.0	200.9
	2025 GAS	5.5	0.0	182.0	212.2	999.6	67.9	0.0	0.0	1029.3	422.0	2918.6
	2025 H2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 REN	0.0	0.0	0.0	0.0	21.2	0.0	0.0	0.0	181.5	0.0	202.7
	2025 HYD	0.0				0.0		0.0	0.0	222.1	0.0	222.1
	2025 NUC	0.0				0.0		0.0	0.0	0.0	0.0	0.0
	2025 ELE	0.0			_	2594.8			0.0	-139.6	0.0	2945.9
	2025 HT	0.0				39.3		0.0	0.0	0.0	0.0	331.2
	2025 Sum	84.7	212.1	219.6	967.4	4063.7		310.1	75.2	1817.5	438.3	9622.6
	2030 BC1	0.0				0.0		0.0		0.0	0.0	0.0
	2030 BC2	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
	2030 HC1	0.0	2.0	0.1 0.0	29.8	0.0		0.0	0.0	247.8	2.0	281.8
	2030 HC2	0.0		0.0		0.0		0.0	0.0	0.0	0.0	0.0
	2030 HC3	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
	2030 DC 2030 OS1	0.0	0.0	7.0	54.9 0.0	0.0 288.6		0.0	0.0	0.0 77.4	0.0	54.9 373.0
	2030 OS1 2030 OS2	0.0		0.0	10.0	0.0		0.0	0.0	52.5		62.5
	2030 HF	45.8				0.0		0.0	33.3	0.0	10.0	177.5
	2030 MD	0.0				34.5		103.4	41.0	1.6	0.0	1091.0
	2030 MD 2030 GSL	0.0		0.0	0.0	0.0		188.6	0.0	0.0	17.0	581.0
	2030 LPG	35.6				60.6		0.0	0.0	0.0	0.0	224.0
	2030 GAS	4.9				983.0		0.0	0.0	974.2	441.0	2922.6
	2030 H2	0.0				0.0		0.0	0.0	0.0	0.0	0.0
	2030 REN	0.0		0.0		25.2		0.0	0.0	161.2	0.0	186.5
	2030 HYD	0.0		_	_	0.0		0.0	0.0	174.8	0.0	174.8
	2030 NUC	0.0	0.0		_	0.0		0.0	0.0	0.0	0.0	0.0
	2030 ELE	0.0	46.5	0.0		2629.0			0.0	-118.3	0.0	2997.3
	2030 HT	0.0				41.2		0.0	0.0	0.0	0.0	248.9
	2030 Sum	86.3	161.0	212.5	949.1	4062.2	1470.2	318.7	74.3	1571.4	470.1	9375.7

WAM scenario (UM: PJ)

year	Act_abb	CON_COM	3 CON_LC	OSS IN_I	BO IN		OOM	TRA_RD	TRA_OT	TRA_OTS	PP_TOTAL	NONEN	SUM
	2020 BC1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 BC2	(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 HC1		0.0	3.2	0.1	24.9	0.0	0.0	0.0	0.0	303.1	3.2	334.4
	2020 HC2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 HC3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 DC		0.0	0.0	0.0 9.6	58.1 0.0	0.0	0.0	0.0	0.0	0.0 80.4	0.0	58.1
	2020 OS1 2020 OS2	,).0).0 F	0.0	9.6 0.0	5.0	296.0 0.0	0.0	0.0	0.0	80.4 55.5		386.0 60.5
	2020 US2 2020 HF		3.9	0.0	32.0	67.1	0.0	0.0	0.0	22.4	16.3	5.0	211.8
	2020 MD		0.0	0.0	0.0	23.7	41.1	913.5	101.1	30.9	36.3	0.0	1146.6
	2020 GSL		0.0	0.0	0.0	0.0	0.0	349.9	180.8	0.0	78.9	14.6	624.1
	2020 LPG	29	9.0	0.0	10.0	0.0	58.5	99.0	0.0	0.0	0.0	0.0	196.5
	2020 GAS		5.6	0.0	189.6	200.9	958.9	67.3	0.0	0.0	1004.9	416.7	2843.8
	2020 H2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 REN		0.0	0.0	0.0	0.0	23.3	0.0	0.0	0.0	198.9	0.0	222.2
	2020 HYD		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	221.6	0.0	221.6
	2020 NUC		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 ELE		0.0	45.0	0.0 0.0	408.5	95.9			0.0	-133.8	0.0	424.1
	2020 HT 2020 Sum	103		181.4 229.6	241.4	148.3 936.4	42.0 1515.7	0.0 1432.0	0.0 288.1	0.0 53.3	0.0 1862.1	0.0 439.4	371.6 7101.4
	2025 BC1).0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 BC2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 HC1		0.0	2.7	0.1	21.2	0.0	0.0	0.0	0.0	0.0	2.7	26.8
	2025 HC2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 HC3	(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 DC		0.0	0.0	0.0	46.4	0.0	0.0	0.0	0.0	0.0		46.4
	2025 OS1		0.0	0.0	21.9	0.0	307.8	0.0	0.0	0.0	68.2		397.9
	2025 OS2		0.0	0.0	0.0	13.7	0.0	0.0	0.0	0.0	65.5		79.2
	2025 HF		2.3	0.0	32.7	58.1	0.0	0.0	0.0	19.3	15.2	13.7	191.3
	2025 MD		0.0	0.0	0.0	22.9 0.0	36.6	788.9	100.9 184.7	30.4	30.9	0.0	1010.6 618.3
	2025 GSL 2025 LPG).0 9.1	0.0	11.3	0.0	0.0 57.4	349.3 82.0	0.0	0.0	48.6 0.0	35.6 0.0	179.8
	2025 GAS		5.0	0.0	150.5	180.9	777.0	121.8	0.0	0.0	890.2	358.3	2483.6
	2025 H2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 REN		0.0	0.0	0.0	0.0	55.2	0.0	0.0	0.0	223.6	0.0	278.8
	2025 HYD		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	239.4	0.0	239.4
	2025 NUC		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 ELE		0.0	44.9	0.0	405.4	131.3	9.5		0.0	-127.2	0.0	478.9
	2025 HT			198.7	0.0	168.7	46.9	0.0	0.0	0.0	0.0	0.0	414.3
	2025 Sum			246.3	216.5	917.3	1412.2	1351.5	300.7	49.7	1454.4	410.4	6445.5
	2030 BC1 2030 BC2		0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0
	2030 HC1		0.0	1.5	0.0	21.2	0.0	0.0	0.0	0.0	0.0	1.5	24.3
	2030 HC2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2030 HC3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2030 DC	(0.0	0.0	0.0	45.2	0.0	0.0	0.0	0.0	0.0	0.0	45.2
	2030 OS1		0.0	0.0	28.1	0.0	287.6	0.0	0.0	0.0	61.8	0.0	377.6
	2030 OS2		0.0	0.0	0.0	25.2	0.0	0.0	0.0	0.0	29.4		54.6
	2030 HF		6.9	0.0	16.1	46.8	0.0	0.0	0.0	9.4	4.8	25.2	159.1
	2030 MD		0.0	0.0	0.0	22.2	34.5	673.0	100.4	26.5	25.6	0.0	882.2
	2030 GSL		0.0	0.0	0.0	0.0	0.0	275.7	187.6	0.0	14.5	53.4	531.1
	2030 LPG 2030 GAS		5.7 1.5	0.0	4.3 147.7	0.0 191.1	52.4 701.8	73.0 159.7	0.0	0.0	0.0 846.2	0.0 366.5	145.4 2417.6
	2030 GAS 2030 H2		0.0	0.0	0.0	191.1	701.8	159.7	0.0	0.0	0.0	366.5	0.0
	2030 Fiz 2030 REN		0.0	0.0	0.0	0.0	102.6	0.0	0.0	0.0	318.7	0.0	421.3
	2030 HYD		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	214.6	0.0	214.6
	2030 NUC).0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2030 ELE		0.0	46.6	0.0	398.3	163.7	41.6	48.2	0.0	-105.2	0.0	593.2
	2030 HT	(0.0	172.7	0.0	145.7	50.6	0.0	0.0	0.0	0.0	0.0	369.0
	2030 Sum	7	7.1	220.7	196.4	895.7	1393.2	1223.0	336.1	35.9	1410.4	446.5	6235.0

BASE_NECP scenario (UM: PJ)

year	Act abb	CON COMB	CON_LOSS	IN BO	IN OCTOT	DOM	TRA RD	TRA_OT	TRA OTS	PP TOTAL	NONEN	SUM
,	2020 BC1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 BC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 HC1	0.0	3.2	0.1	28.1	0.0	0.0	0.0	0.0	320.8	0.0	352.2
	2020 HC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 HC3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 DC	0.0	0.0	0.0	65.5	0.0	0.0	0.0	0.0	0.0	0.0	65.5
	2020 OS1	0.0	0.0	12.3	0.0	311.3	0.0	0.0	0.0	74.8	0.0	398.4
	2020 OS2	0.0	0.0	0.0	7.9	0.0	0.0	0.0	0.0	81.1	0.0	89.0
	2020 HF	71.2	0.0	19.8	53.8	0.0	0.0	0.0	25.4	7.2	7.9	185.4
	2020 MD	0.0	0.0	0.0	25.0	41.1	1012.2	86.6	21.6	10.9	0.0	1197.3
	2020 GSL	0.0	0.0	0.0	0.0	0.0	223.6	226.8	0.0	17.8	20.2	488.4
	2020 LPG	30.5	0.0	8.1	0.0	58.5	106.8	0.0	0.0	0.0	0.0	204.0
	2020 GAS	5.8	0.0	176.3	192.2	987.1	47.6	0.0	0.0	1046.7	398.1	2853.8
	2020 H2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 REN	0.0	0.0	0.0	0.0	11.2	0.0	0.0	0.0	207.9	0.0	219.1
	2020 HYD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	242.0	0.0	242.0
	2020 NUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2020 ELE	0.0	1244.2	0.0	406.7	91.6	0.3	4.1	0.0	-146.9	0.0	1600.0
	2020 HT	0.0	207.2	0.0	119.7	46.8	0.0	0.0	0.0	0.0	0.0	373.7
	2020 Sum	107.5	1454.5	216.6	899.0	1547.6	1390.6	317.4	47.1	1862.2	426.3	8268.9
	2025 BC1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 BC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 HC1	0.0	3.2	0.1	28.1	0.0	0.0	0.0	0.0	285.4	0.0	316.8
	2025 HC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 HC3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 DC	0.0	0.0	0.0	63.0	0.0	0.0	0.0	0.0	0.0	0.0	63.0
	2025 OS1 2025 OS2	0.0	0.0	13.0	0.0	307.3	0.0	0.0	0.0	62.0	0.0	382.3
	2025 US2 2025 HF	0.0 58.2	0.0	0.0	14.9	0.0	0.0	0.0	0.0 25.9	45.4	0.0 14.9	60.3
	2025 MD	0.0	0.0	17.8 0.0	51.8 25.2	0.0 37.4	847.9	0.0 84.9	25.9	4.3 1.8	0.0	172.8 1019.5
	2025 GSL	0.0	0.0	0.0	0.0	0.0	322.9	236.3	0.0	4.3	27.9	591.4
	2025 LPG	25.0	0.0	7.3	0.0	56.4	94.9	0.0	0.0	0.0	0.0	183.6
	2025 GAS	5.1	0.0	177.0	184.8	895.3	74.1	0.0	0.7	1021.4	391.4	2749.7
	2025 H2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 REN	0.0	0.0	0.0	0.0	19.1	0.0	0.0	0.0	229.7	0.0	248.8
	2025 HYD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	241.4	0.0	241.4
	2025 NUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2025 ELE	0.0	1310.3	0.0	405.7	116.4	9.0	8.7	0.0	-138.0	0.0	1712.0
	2025 HT	0.0	205.7	0.0	122.6	47.6	0.0	0.0	0.0	0.0	0.0	375.8
	2025 Sum	88.3	1519.1	215.2	896.1	1479.4	1348.8	329.8	48.9	1757.7	434.1	8117.5
	2030 BC1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2030 BC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2030 HC1	0.0	2.5	0.1	28.2	0.0	0.0	0.0	0.0	250.0	0.0	280.8
	2030 HC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2030 HC3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2030 DC	0.0	0.0	0.0	62.2	0.0	0.0	0.0	0.0	0.0	0.0	62.2
	2030 OS1	0.0	0.0	15.2	0.0	279.0	0.0	0.0	0.0	42.1	0.0	336.4
	2030 OS2	0.0	0.0	0.0	18.9	0.0	0.0	0.0	0.0	30.4	0.0	49.3
	2030 HF	41.5	0.0	12.9	47.0	0.0	0.0	0.0	25.7	2.5	18.9	148.5
	2030 MD	0.0	0.0	0.0	25.6	34.5	763.3	85.7	23.1	1.8	0.0	934.0
	2030 GSL	0.0	0.0	0.0	0.0	0.0	290.3	239.9	0.0	1.7	34.2	566.0
	2030 LPG	41.5	0.0	12.3	0.0	54.4	96.2	0.0	0.0	0.0	0.0	204.4
	2030 GAS 2030 H2	5.1 0.0	0.0	171.4 0.0	189.9 0.0	874.0 0.0	93.8 0.0	0.0	2.1 0.0	1078.2 0.0	391.2 0.0	2805.8 0.0
	2030 H2 2030 REN	0.0	0.0	0.0	0.0	29.4	0.0	0.0	0.0	211.0	0.0	240.4
	2030 HYD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	195.5	0.0	195.5
	2030 NUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2030 RUC 2030 ELE	0.0	1365.4	0.0	402.6	127.8	16.5	12.7	0.0	-116.6	0.0	1808.3
	2030 HT	0.0	206.5	0.0	124.0	51.5	0.0	0.0	0.0	0.0	0.0	382.0
	2030 Sum	88.1	1574.3	212.0	898.4	1450.6	1260.1	338.2	50.9	1696.5	444.3	8013.6
					550.4	50.5			55.5	. 000.0		00.0.0

2035 BC1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2035 BC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2035 HC1	0.0	2.5	0.1	28.2	0.0	0.0	0.0	0.0	199.0	0.0	229.8
2035 HC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2035 HC3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2035 DC	0.0	0.0	0.0	62.2	0.0	0.0	0.0	0.0	0.0	0.0	62.2
		0.0									
2035 OS1	0.0		18.2	0.0	284.6	0.0	0.0	0.0	29.4	0.0	332.2
2035 OS2	0.0	0.0	0.0	20.2	0.0	0.0	0.0	0.0	21.5	0.0	41.7
2035 HF	38.8	0.0	10.8	45.5	0.0	0.0	0.0	25.2	0.9	20.2	141.5
2035 MD	0.0	0.0	0.0	25.8	9.3	602.3	90.3	24.0	1.7	0.0	753.4
2035 GSL	0.0	0.0	0.0	0.0	0.0	367.5	253.8	0.0	0.6	38.5	660.3
2035 LPG	38.8	0.0	10.2	0.0	50.6	119.6	0.0	0.0	0.0	0.0	219.3
2035 GAS	4.8	0.0	166.1	192.1	809.1	133.8	0.0	3.9	1053.5	387.9	2751.3
2035 H2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2035 REN	0.0	0.0	0.0	0.0	42.3	0.0	0.0	0.0	290.7	0.0	333.0
2035 HYD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	194.1	0.0	194.1
2035 NUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2035 ELE	0.0	1427.8	0.0	409.5	132.9	18.6	14.0	0.0	-121.0	0.0	1881.7
2035 HT	0.0	209.1	0.0	127.7	51.4	0.0	0.0	0.0	0.0	0.0	388.2
2035 Sum	82.5	1639.3	205.6	911.3	1380.2	1241.8	358.1	53.1	1670.4	446.5	7988.8
2040 BC1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2040 BC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2040 HC1	0.0	2.5	0.1	28.2	0.0	0.0	0.0	0.0	148.0	0.0	178.8
2040 HC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2040 HC3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2040 DC	0.0	0.0	0.0	62.2	0.0	0.0	0.0	0.0	0.0	0.0	62.2
2040 OS1	0.0	0.0	16.7	0.0	265.4	0.0	0.0	0.0	35.8	0.0	317.9
2040 OS2	0.0	0.0	0.0	22.0	0.0	0.0	0.0	0.0	21.3	0.0	43.2
2040 HF	36.2	0.0	12.2	49.4	0.0	0.0	0.0	23.4	0.6	22.0	143.9
2040 MD	0.0	0.0	0.0	26.7	1.5	530.8	89.5	24.6	1.7	0.0	674.8
2040 GSL	0.0	0.0	0.0	0.0	0.0	350.8	269.3	0.0	0.4	38.7	659.2
2040 LPG	36.2	0.0	11.6	0.0	50.6	118.8	0.0	0.0	0.0	0.0	217.1
2040 LFG 2040 GAS				194.8							
	4.5	0.0	168.0		834.2	173.8	0.0	7.5	1031.8	392.3	2806.9
2040 H2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2040 REN	0.0	0.0	0.0	0.0	46.1	0.0	0.0	0.0	370.4	0.0	416.4
2040 HYD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	192.7	0.0	192.7
2040 NUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2040 ELE	0.0	1480.9	0.0	421.6	137.9	20.0	14.9	0.0	-125.3	0.0	1950.0
2040 HT	0.0	219.0	0.0	139.2	50.2	0.0	0.0	0.0	0.0	0.0	408.4
2040 Sum	76.8	1702.5	208.7	944.1	1385.9	1194.2	373.7	55.6	1677.3	452.9	8071.5
2045 BC1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2045 BC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2045 HC1	0.0	2.5	0.1	28.2	0.0	0.0	0.0	0.0	113.9	0.0	144.7
2045 HC2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2045 HC3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2045 DC	0.0	0.0	0.0	62.2	0.0	0.0	0.0	0.0	0.0	0.0	62.2
2045 OS1	0.0	0.0	17.4	0.0	260.1	0.0	0.0	0.0	58.6	0.0	336.1
2045 OS2	0.0	0.0	0.0	23.8	0.0	0.0	0.0	0.0	17.6	0.0	41.4
2045 HF											147.7
	34.9	0.0	14.3	53.6	0.0	0.0	0.0	20.7	0.3	23.8	
2045 MD	0.0	0.0	0.0	27.6	3.8	519.8	90.4	25.2	1.6	0.0	668.4
2045 GSL	0.0	0.0	0.0	0.0	0.0	353.5	286.6	0.0	0.2	41.2	681.6
2045 LPG	34.9	0.0	13.6	0.0	44.1	124.8	0.0	0.0	0.0	0.0	217.4
2045 GAS	4.3	0.0	173.0	196.1	855.5	218.3	0.0	10.9	1022.6	397.8	2878.4
2045 H2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2045 REN	0.0	0.0	0.0	0.0							
2045 HYD	0.0				43.0	0.0	0.0	0.0	378.6	0.0	421.7
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	198.8	0.0	198.8
2045 NUC	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	198.8 0.0	0.0 0.0	198.8 0.0
2045 ELE	0.0 0.0	0.0 1495.2	0.0 0.0 0.0	0.0 0.0 429.0	0.0 0.0 141.7	0.0 0.0 17.5	0.0 0.0 14.0	0.0 0.0 0.0	198.8 0.0 -125.4	0.0 0.0 0.0	198.8 0.0 1972.0
2045 ELE 2045 HT	0.0 0.0 0.0	0.0 1495.2 227.0	0.0 0.0 0.0 0.0	0.0 0.0 429.0 147.4	0.0 0.0 141.7 48.4	0.0 0.0 17.5 0.0	0.0 0.0 14.0 0.0	0.0 0.0 0.0 0.0	198.8 0.0 -125.4 0.0	0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8
2045 ELE	0.0 0.0	0.0 1495.2	0.0 0.0 0.0	0.0 0.0 429.0	0.0 0.0 141.7	0.0 0.0 17.5	0.0 0.0 14.0	0.0 0.0 0.0	198.8 0.0 -125.4	0.0 0.0 0.0	198.8 0.0 1972.0
2045 ELE 2045 HT	0.0 0.0 0.0	0.0 1495.2 227.0	0.0 0.0 0.0 0.0	0.0 0.0 429.0 147.4	0.0 0.0 141.7 48.4	0.0 0.0 17.5 0.0	0.0 0.0 14.0 0.0	0.0 0.0 0.0 0.0	198.8 0.0 -125.4 0.0	0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8
2045 ELE 2045 HT 2045 Sum	0.0 0.0 0.0 74.1	0.0 1495.2 227.0 1724.8	0.0 0.0 0.0 0.0 218.3	0.0 0.0 429.0 147.4 968.0	0.0 0.0 141.7 48.4 1396.6	0.0 0.0 17.5 0.0 1233.9	0.0 0.0 14.0 0.0 391.0	0.0 0.0 0.0 0.0 56.8	198.8 0.0 -125.4 0.0 1667.0	0.0 0.0 0.0 0.0 462.8	198.8 0.0 1972.0 422.8 8193.2
2045 ELE 2045 HT 2045 Sum 2050 BC1	0.0 0.0 0.0 74.1 0.0	0.0 1495.2 227.0 1724.8 0.0	0.0 0.0 0.0 0.0 218.3 0.0	0.0 0.0 429.0 147.4 968.0 0.0	0.0 0.0 141.7 48.4 1396.6 0.0	0.0 0.0 17.5 0.0 1233.9 0.0	0.0 0.0 14.0 0.0 391.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0	198.8 0.0 -125.4 0.0 1667.0 0.0	0.0 0.0 0.0 0.0 462.8 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2	0.0 0.0 0.0 74.1 0.0 0.0	0.0 1495.2 227.0 1724.8 0.0 0.0	0.0 0.0 0.0 0.0 218.3 0.0 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0	0.0 0.0 14.0 0.0 391.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0	0.0 0.0 0.0 0.0 462.8 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1	0.0 0.0 0.0 74.1 0.0 0.0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5	0.0 0.0 0.0 0.0 218.3 0.0 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3	0.0 0.0 141.7 48.4 1396.6 0.0 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8	0.0 0.0 0.0 0.0 462.8 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0	0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8 0.0 0.0	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0	0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 0.0 62.2	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8 0.0 0.0	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 0.0 62.2
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OC1	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 18.9	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 0.0 62.2	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8 0.0 0.0 0.0 57.0	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 HC3 2050 DC 2050 OS1 2050 OS2	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 18.9 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 0.0 62.2 0.0 26.1	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 271.8 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8 0.0 0.0 0.0 57.0 18.9	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 DC 2050 OS1 2050 OS2 2050 HF	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 11.4	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 0.0 62.2 0.0 26.1 58.6	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 271.8 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8 0.0 0.0 0.0 57.0 18.9 0.2	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.4	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 0.0 62.2 0.0 26.1 58.6 28.1	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 271.8 0.0 0.0 3.8	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8 0.0 0.0 0.0 57.0 18.9 0.2	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 0.0 62.2 347.7 45.0 150.6 614.6
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD 2050 GSL	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 18.9 0.0 11.4 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 62.2 0.0 26.1 58.6 28.1	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 79.8 0.0 0.0 57.0 18.9 0.2 1.6 0.1	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6 614.6 714.9
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD 2050 MD 2050 GSL 2050 LPG	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 18.9 0.0 11.4 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 62.2 0.0 26.1 58.6 28.1 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 271.8 0.0 0.0 3.8 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 365.9 126.5	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 55.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 79.8 0.0 0.0 0.0 57.0 18.9 0.2 1.6 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD 2050 GSL 2050 LPG 2050 GAS	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 11.4 0.0 10.6 176.6	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 0.0 62.2 0.0 26.1 58.6 28.1 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 365.9 365.9 126.5 246.4	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 0.0 0.0 0.0 57.0 18.9 0.2 1.6 0.1	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0 2869.5
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 MD 2050 GSL 2050 GAS 2050 IPG 2050 GAS	0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 11.4 0.0 0.0 10.6 176.6 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 0.0 28.3 0.0 0.0 62.2 0.0 26.1 58.6 28.1 0.0 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 271.8 0.0 0.0 44.3 814.7 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 365.9 126.5 246.4 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8 0.0 0.0 0.0 57.0 18.9 0.2 1.6 0.1 0.0	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0 2869.5 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD 2050 GSL 2050 LPG 2050 GAS 2050 H2 2050 REN	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 18.9 0.0 11.4 0.0 0.0 10.6 176.6 0.0 0.0	0.0 0.0 429.0 0.0 0.0 0.0 0.0 28.3 0.0 62.2 0.0 26.1 0.0 0.0 197.3 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 271.8 0.0 0.0 3.8 0.0 44.3 814.7 0.0 57.9	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 365.9 126.5 246.4 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 0.0 0.0 57.0 18.9 0.2 1.6 0.1 0.0 1016.2 0.0 386.9	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0 2869.5 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 MD 2050 GSL 2050 GAS 2050 IPG 2050 GAS	0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 11.4 0.0 0.0 10.6 176.6 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 0.0 28.3 0.0 0.0 62.2 0.0 26.1 58.6 28.1 0.0 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 271.8 0.0 0.0 44.3 814.7 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 365.9 126.5 246.4 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 79.8 0.0 0.0 0.0 57.0 18.9 0.2 1.6 0.1 0.0	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0 2869.5 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD 2050 GSL 2050 LPG 2050 GAS 2050 H2 2050 REN	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 18.9 0.0 11.4 0.0 0.0 10.6 176.6 0.0 0.0	0.0 0.0 429.0 0.0 0.0 0.0 0.0 28.3 0.0 62.2 0.0 26.1 0.0 0.0 197.3 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 271.8 0.0 0.0 3.8 0.0 44.3 814.7 0.0 57.9	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 365.9 126.5 246.4 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 0.0 0.0 57.0 18.9 0.2 1.6 0.1 0.0 1016.2 0.0 386.9	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0 2869.5 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD 2050 GSL 2050 LPG 2050 LPG 2050 HS 2050 HP 2050 HP	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 18.9 0.0 11.4 0.0 0.0 10.6 176.6 0.0 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 62.2 0.0 26.1 58.6 28.1 0.0 0.0 197.3 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 271.8 0.0 0.0 3.8 0.0 44.3 814.7 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 365.9 126.5 246.4 0.0	0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 0.0 0.0 57.0 18.9 0.2 1.6 0.1 0.0 1016.2 0.0 386.9 204.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0 2869.5 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD 2050 GSL 2050 LPG 2050 H2 2050 H2 2050 H2 2050 H2 2050 HYD 2050 NUC	0.0 0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 11.4 0.0 10.6 176.6 0.0 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 28.3 0.0 0.0 62.2 0.0 26.1 58.6 28.1 0.0 197.3 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 271.8 0.0 0.0 3.8 0.0 44.3 814.7 0.0 57.9 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 126.5 246.4 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 0.0 0.0 0.0 0.0 18.9 0.2 1.6 0.1 0.0 1016.2 0.0 386.9 204.8 0.0	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.0 402.1 0.0 0.0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0 2869.5 0.0 444.8 0.0
2045 ELE 2045 HT 2045 Sum 2050 BC1 2050 BC2 2050 HC1 2050 HC2 2050 HC3 2050 DC 2050 OS1 2050 OS2 2050 HF 2050 MD 2050 GSL 2050 HS 2050 HYD 2050 NUC 2050 ELE	0.0 0.0 74.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1495.2 227.0 1724.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.4 0.0 0.0 10.6 176.6 0.0 0.0	0.0 0.0 429.0 147.4 968.0 0.0 0.0 0.0 62.2 0.0 26.1 58.6 28.1 0.0 197.3 0.0 0.0 0.0	0.0 0.0 141.7 48.4 1396.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 17.5 0.0 1233.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 463.9 365.9 126.5 246.4 0.0 0.0	0.0 0.0 14.0 0.0 391.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 -125.4 0.0 1667.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.9 0.2 1.6 0.1 0.0 1016.2 0.0 386.9 204.8 0.0	0.0 0.0 0.0 0.0 462.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	198.8 0.0 1972.0 422.8 8193.2 0.0 0.0 110.7 0.0 62.2 347.7 45.0 150.6 614.6 714.9 215.0 2869.5 0.0 444.8 204.8 0.0

A1.2 AGRICULTURAL SECTOR PROJECTIONS

Legend of GAINS sectors and activities

	ACTIVITIES	
Agriculture		
Abbreviation	Description	<u>Units</u>
BS	Buffalos	M animals
CM	Camels	M animals
DL	Dairy cows - liquid (slurry) systems	M animals
DS	Dairy cows - solid systems	M animals
FU	Fur animals	M animals
НО	Horses	M animals
LH	Laying hens	M animals
NOF	No fuel use	various units
OL	Other cattle - liquid (slurry) systems	M animals
OP	Other poultry	M animals
OS	Other cattle - solid systems	M animals
PL	Pigs - liquid (slurry) systems	M animals
PS	Pigs - solid systems	M animals
SH	Sheep and goats	M animals
AREA	Area of activity	M ha
FIRE_MASS	Amount of biomass burned	Mt biomass
N_INPUT	Mass of nitrogen added	kt

	<u>SECTORS</u>	
Agriculture		
Abbreviation	<u>Description</u>	<u>Units</u>
AGR_ARABLE	Agriculture: Ploughing, tilling, harvesting	M ha
AGR_ARABLE_SUBB	Arable agricultural land in subboreal climate	M ha
AGR_ARABLE_TEMP	Arable agricultural land in temporal climate	M ha
FOREST	Area of activity -Forest	M ha
GRASSLAND	Area of activity -Grassland and soils	M ha
HISTOSOLS	Area of activity -organic soils	M ha
AGR_BEEF	Agriculture: Livestock - other cattle	M animals
AGR_COWS	Agriculture: Livestock - dairy cattle	M animals
AGR_OTANI	Agriculture: Livestock - other animals (sheep,	M animals
AGR_OTHER	Agriculture: Other (activity as emissions in kt)	kt
AGR_PIG	Agriculture: Livestock - pigs	M animals
AGR_POULT	Agriculture: Livestock - poultry	M animals
FCON_OTHN	Fertilizer use - other N fertilizers	kt N
FCON_UREA	Fertilizer use - urea	kt N
FERTPRO	Fertilizer production (in N equivalents)	kt N
IO_NH3_EMISS	Other industrial NH3 emissions	kt NH3
OTH_NH3_EMISS	Other NH3 emissions	kt NH3
PR_FERT	Ind. Process: Fertilizer production	Mt
WT_NH3_EMISS	Waste treatment and disposal	kt NH3
RICE	Rice area harvested	M ha
WASTE_AGR	Waste: Agricultural waste burning	Mt

BASE_NECP scenario

Activity	Sector	Unit	2020	2025	2030	2035	2040	2045	2050
DL	AGR_COWS	M animals	0.99361761	1.01048529	1.02826254	0.95292	0.9669568	0.97602623	0.91677406
DS	AGR COWS	M animals		0.81521542					
OL	AGR BEEF	M animals		1.93167151					
OS	AGR BEEF	M animals	1.90506052	1.89120418	1.92447572	1.86722001	1.89472473	1.91249601	1.78400885
PL	AGR_PIG	M animals	8.79438303	9.03766149	9.44322368	9.94518156	10.279592	10.591514	10.8542522
PS	AGR_PIG	M animals	0	0	0	0	0	0	0
LH	AGR_POULT	M animals	38.2066553	39.5171975	41.0138407	41.9514345	42.9934466	43.7534178	44.6012406
OP	AGR_POULT	M animals	160.962725	164.466696	168.046943	172.751783	177.224215	182.869169	186.605885
SH	AGR_OTANI	M animals	7.99597533	8.11441789	8.10285996	8.01659216	8.13921067	8.20323442	8.02028994
НО	AGR_OTANI	M animals	0.43764918	0.43764918	0.43764918	0.43764918	0.43764918	0.43764918	0.43764918
FU	AGR_OTANI	M animals	0.175	0.175	0.175	0.175	0.175	0.175	0.175
BS	AGR_OTANI	M animals	0.390418	0.42834865	0.47716557	0.50340636	0.55149661	0.59776151	0.59655473
CM	AGR_OTANI	M animals	13.9281576	12.3088445	11.5933201	11.5933201	11.5933201	11.5933201	11.5933201
NOF	PR_FERT	Mt	0.931876	0.931876	0.931876	0.931876	0.931876	0.931876	0.931876
NOF	FERTPRO	kt N	273	273	273	273	273	273	273
NOF	FCON_UREA	kt N	290.545626	288.366534	286.187442	284.245647	281.912648	279.27299	276.633332
NOF	FCON_OTHN	kt N	198.733804	197.2433	195.752797	189.497098	187.941766	186.181994	184.422221
NOF	IO_NH3_EMISS	kt NH3	0.373	0.373	0.373	0.373	0.373	0.373	0.373
NOF	WT_NH3_EMISS	kt NH3	7.526	7.152	6.778	6.778	6.778	6.778	6.778
NOF	OTH_NH3_EMISS	kt NH3	15.4029785	15.4029785	15.4029785	15.4029785	15.4029785	15.4029785	15.4029785
FIRE_MASS	GRASSLAND	Mt biomass	0	0	0	0	0	0	0
FIRE_MASS	FOREST	Mt biomass	0	0	0	0	0	0	0
NOF	WASTE_AGR	Mt	0.21	0.21	0.21	0.21	0.21	0.21	0.21
NOF	AGR_ARABLE	M ha	8.8	8.75	8.7	8.7	8.7	8.7	8.7
RICE_AREA	AGR_ARABLE	M ha	0	0	0	0	0	0	0
AREA	RICE_FLOOD	M ha	0.22732912	0.22732912	0.22732912	0.22732912	0.22732912	0.22732912	0.22732912
AREA	RICE_INTER	M ha	0	0	0	0	0	0	0
AREA	RICE_UPLAND	M ha	0	0	0	0	0	0	0
AREA	AGR_ARABLE_SUB	IM ha	0	0	0	0	0	0	0
AREA	AGR_ARABLE_TEM	M ha	8.8	8.75	8.7	8.7	8.7	8.7	8.7
AREA	GRASSLAND	M ha	4.069468	3.962246	3.855024	3.855024	3.855024	3.855024	3.855024
AREA	FOREST	M ha	9.3054	9.3054	9.3054		9.3054	9.3054	9.3054
AREA	HISTOSOLS	M ha	0	0	0		0	0	0
N_INPUT	AGR_ARABLE_SUB		0	0	0	0	0	0	0
N_INPUT	AGR_ARABLE_TEM	lkt N	517.854	517.854	517.854		517.854	517.854	517.854
N_INPUT	GRASSLAND	kt N	106.038	106.038	106.038		106.038	106.038	106.038
N_INPUT	FOREST	kt N	0		0		0	0	0
N_INPUT	ATM_DEPO	kt N	136.266745			136.266745			
N_INPUT	CROP_RESID	kt N	70.387	70.387	70.387	70.387	70.387	70.387	70.387

A1.3 ROAD TRANSPORT CONTROL STRATEGY

BASE_NECP scenario (UM: %)

Activity	Sector	Technology	2020	2025	2030	2035	2040	2045	2050
MD	TRA_RD_HDT	NSC_TRA	0	0	0	0	0	0	0
MD	TRA_RD_HDT	HDEUI	4.3152105	21.257079	0	0	0	0	0
MD	TRA_RD_HDT	HDEUII	13.510338	0	0	0	0	0	0
MD	TRA_RD_HDT	HDEUIII	19.883595	15.97578	26.161853	22.892072	21.253118	21.249985	21.255684
MD	TRA_RD_HDT	HDEUIV	3.8763282	3.1000211	0	0	0	0	0
MD	TRA_RD_HDT	HDEUV	13.422877	11.329518	2.4987948	0	0	0	0
MD	TRA_RD_HDT	HDEUVI	16.808498	13.313851	10.455112	5.2583319	0	0	0
MD	TRA_RD_HDT	HDEUVII	4.5058479	35.023752	60.88424	71.849596	78.746882	78.750015	78.744316
GSL	TRA_RD_LD4C	NSC_TRA	0	0	0	0	0	0	0
GSL	TRA_RD_LD4C	LFEUI	4.6622456	0	0	0	0	0	0
GSL	TRA_RD_LD4C	LFEUII	0	4.8297525	0	0	0	0	0
GSL	TRA_RD_LD4C	LFEUIII	8.9014081	0	4.3943775	0	0	0	0
GSL	TRA_RD_LD4C	LFEUIV	21.485937	4.6732924	0	4.1521029	0	0	0
GSL	TRA_RD_LD4C	LFEUV	15.161967	8.1228608	3.4413503	0	4.1720434	3.9855665	3.9726349
GSL	TRA_RD_LD4C	LFEUVI	48.234361	82.374094	92.164272	95.847897	95.827957	96.014434	96.027365
LPG	TRA_RD_LD4C	NSC_TRA	0	0	0	0	0	0	0
LPG	TRA_RD_LD4C	LFEUI	4	0	0	0	0	0	0
LPG	TRA_RD_LD4C	LFEUII	4	11.679304	0	0	0	0	0
LPG	TRA_RD_LD4C	LFEUIII	10.3663	11.679304	10.595274	0	0	0	0
LPG	TRA_RD_LD4C	LFEUIV	22.655275	6.103665	10.595274	9.9326406	0	0	0
LPG	TRA_RD_LD4C	LFEUV	13.233227	9.2661122	4.4439498	9.9326406	19.700116	18.842187	18.834359
LPG	TRA_RD_LD4C	LFEUVI	27.114663	61.271614	74.365502	80.134719	80.299884	81.157813	81.165641
MD	TRA_RD_LD4C	NSC_TRA	0	0	0	0	0	0	0
MD	TRA_RD_LD4C	MDEUI	1.0779422	0	0	0	0	0	0
MD	TRA_RD_LD4C	MDEUII	0	1.1934061	0	0	0	0	0
MD	TRA_RD_LD4C	MDEUIII	4.8309037	0	1.265683	0	0	0	0
MD	TRA_RD_LD4C	MDEUIV	16.810045	4.6185303	0	1.2888952	0	0	0
MD	TRA_RD_LD4C	MDEUV	26.195111	12.796603	3.5884348	0	1.3354648	1.4590455	1.5090082
MD	TRA_RD_LD4C	MDEUVI	51.085998	81.39146	53.448017	23.338427	5.8528479	0	0
MD	TRA_RD_LD4C	MDEUVIp	0	0	41.697865	75.372678	49.239727	26.811889	6.3145361
MD	TRA_RD_LD4C	MDEUVII	0	0	0	0	43.571961	71.729066	92.176456
MD	TRA_RD_LD4T	NSC_TRA	0	0	0	0	0	0	0
MD	TRA_RD_LD4T	MDEUI	0	10.606968	0	0	0	0	0
MD	TRA_RD_LD4T	MDEUII	2.8428509	0	0	0	0	0	0
MD	TRA_RD_LD4T	MDEUIII	18.380245	6.561543	10.552338	0	0	0	0
MD	TRA_RD_LD4T	MDEUIV	21.495204	21.527393	9.1098564	10.929627	0	0	0
MD	TRA_RD_LD4T	MDEUV	15.43494	4.6980543	3.8357666	0	10.033828	11.565759	12.159571
MD	TRA_RD_LD4T	MDEUVI	22.748751	21.443174	17.879356	10.091111	0	0	0
MD	TRA_RD_LD4T	MDEUVIp	8.2763784	35.162867	58.622683	78.979263	89.966172	88.434241	87.840429
MD	TRA_RD_LD4T	MDEUVII	0	0	0	0	0	0	0

APPENDIX 6 SUMMARY INFORMATION ON CONDENSABLE IN PM

In order to improve atmospheric modelling and support the design of efficient and relevant policy for reducing the levels of air pollutants, emission inventory data need to be complete, accurate and comparable. With this aim, Italy immediately accepted the EMEP proposal on the necessity of accounting for condensable in PM emissions and generally applies these emission factors to all the categories. Of course, for certain categories is not possible to define if the emission factors includes condensable or not, as reported also in the 2019 Guidebook EMEP/EEA, consequently it is hard to fill the following table at category level but it is possible to provide more information. In particular, Italy uses emission factors with condensable for PM emissions from road transport thanks to the Copert model and in domestic and residential heating thanks several studies carried on in the last years about heating appliances, burning wood or other fuels. PM emission factors includes condensable also in the most of the largest industrial plants whose ISPRA has direct information because these are plants of national interest. Finally, PM emissions from incinerators include condensable too.

